

Introducing My New PhD Research: Adversarial Robustness in Network Intrusion Detection System

Mouzaoui Matthieu

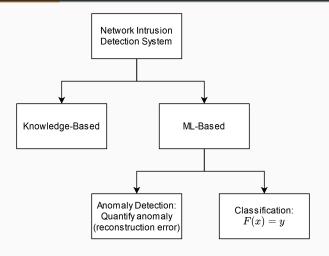
06-03-2024

PhD student, PIRAT); , Inria

Background

- · New PhD student in PIRAT.
- · ML, probability background.
- · Supervised by:
 - · Yufei Han, Inria.
 - · Michel Hurfin, Inria.
 - · Gabriel Rilling, CEA-List.
 - · Gregory Blanc, Télécom-Sud Paris.
- Title: Adversarially Robust Machine Learning based Network Intrusion Detection System.

NIDS Model



Focus on ML-NIDS. ML-based ⇒ vulnerable to adversarial attacks. First spotted against Neural Networks in [Szegedy et al., 2014].

Adversarial Sample Example

Example of Adversarial Sample

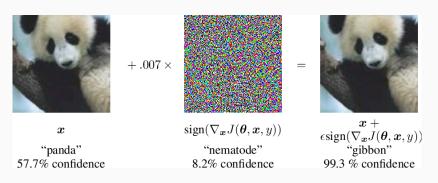


Figure 1: Adversarial sample generation, from [Goodfellow et al., 2015]

Adversarial Attacks against ML model

Targeted Phase

Training or inference time.

Adversarial Sample

Model $\mathbf{x} :\mapsto \mathit{F}(\mathbf{x})$. Given \mathbf{x} , find perturbation δ such that

$$t = F(\mathbf{x} + \boldsymbol{\delta}) \neq F(\mathbf{x})$$
 or, if $\mathbf{r} = \mathbf{x} + \boldsymbol{\delta}$, $\tilde{r} = Decode(Encode(\mathbf{r}))$, $\|\tilde{r} - \mathbf{r}\|_{p} \leq \alpha$.

Evasion

 ${f x}$ a malicious sample, the attacker wants ${\it F}({f x}+{f \delta})=$ 'benign'. ightarrow evasion.

Optimization problem

Maximize loss of classifier / cross the threshold, minimizing norm of perturbation.

Evasion in network domain

Developed in Computer Vision:

- · Features: pixel, range known.
- Dependencies

Constraints specific to ML-NIDS

 $\mathbf{x} + \boldsymbol{\delta}$ should satisfy some properties:

• Plausibility (similar to real traffic).

· Preserved Semantic (coherent with its purpose)

• Robustness to preprocessing (δ not removed).

Most papers focus on **feature-level** attacks, features = Netflows.

Constraints from [Pierazzi et al.,] and [Vitorino et al., 2023]

Orientations

Still in review process, however, identified 2 gaps:

- · Validity. Now: ensured by expert knowledge.
- \cdot Preserved Semantic. Now "justified" though bound of $\|oldsymbol{\delta}\|_{l_p}.$

Inverse feature mapping. Uses graph representation.

References i

- Goodfellow, I. J., Shlens, J., and Szegedy, C. (2015). Explaining and harnessing adversarial examples.
- Pierazzi, F., Pendlebury, F., Cortellazzi, J., and Cavallaro, L.
 Intriguing properties of adversarial ML attacks in the problem space.
- Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and Fergus, R. (2014).

 Intriguing properties of neural networks.
- Vitorino, J., Praça, I., and Maia, E. (2023).

 Towards adversarial realism and robust learning for iot intrusion detection and classification.

 Annals of Telecommunications, 78(7–8):401–412.