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Introduction I
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Introduction II

Focus

Network traffic attribution

Machine learning techniques

Traditional challenges

Annotation effort

Imbalance in data volumes

Ever evolving traffic (concept drift)
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Our Proposed Framework: DYNAMO I
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Our Proposed Framework: DYNAMO II
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Our Proposed Framework: DYNAMO III
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Our Proposed Framework: DYNAMO IV
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Our Proposed Framework: DYNAMO V
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Our Proposed Framework: DYNAMO VI
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Our Proposed Framework: DYNAMO VII
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Related work I

Attack attribution

Manual analysis: synthesizing and analyze report

Machine learning-based: multi-class classification task

Query to Label: Active learning

Uncertainty-based sampling

Representation-based sampling
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Method I
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Method II
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Method III
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Method IV
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Method V
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Nearest neighbor-based self-supervised feature encoding I

Raw feature vectors from Netflow : GraphSage method
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Density-aware active learning I
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Unseen campaingn strategy I

Pu learning

Train a classifier to distinguish between positive and negative.

Learning phase: Positive and Unlabelled (only some of the positive examples

in the training data are labeled and none of the negative examples are)
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Goals I

Q1 - Raw vs Embedded

Q2 - Effectiveness of DYNAMO’s density-aware active learning module ?

Q3 - Effectiveness ML-based unseen campaign detection ?
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Set up I
Dataset: CTU13
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Set up II

Dataset: CTU13

Baseline

Select p% of Dtrain
attr (1k, 2k, 3k, 4k, and 5k)

Random, UAL, and DYNAMO
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Set up III

Dataset: CTU13

Baseline

Select p% of Dtrain
attr (1k, 2k, 3k, 4k, and 5k)

Random, UAL, and DYNAMO

Attack attribution

Gradient Boosting Trees, Label Spreading

Macro F1, Balanced Accuracy
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Set up IV

Dataset: CTU13 Baseline

Select p% of Dtrain
attr (1k, 2k, 3k, 4k, and 5k)

Random, UAL, and DYNAMO

Attack attribution

Gradient Boosting Trees, Label Spreading

Macro F1, Balanced Accuracy

Unseen campaign detection

ISO, OCSVM, and PU

Macro F1, AUC
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Results - Attack attribution Q1 I

Mean ± Standard deviation of GBT trained with the full supervision method

Embedded data increases both macro-F1 score and balanced accuracy.
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Results - Attack attribution Q2 I

Mean ± Standard deviation of Macro F1-score

Dynamo outperforms UAL (GB, LS) and Random (GB)
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Results - Unseen campaign Q3 I

Mean ± Standard deviation of Macro F1-score

Pu performs best

Dynamo provide better result for ISO and OCSVM
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Key Takeaway

ML-Based attack attribution challenges: scarce label data, imbalanced

campaign distribution

Self-Supervised feature encoding boosts attack attribution

Density-aware active learning helps overcome imbalanced data issue

Positive-Unlabeled learning outperforms for unseen campaign detection
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Summary and perspectives

DYNAMO, a weakly supervised ML-based pipeline designed for automated

network attack attribution without requiring exhaustive labeling of attack

campaigns

Density-aware Machine Learning

Positive-unlabeled weakly supervised learning

Next steps

Adapt to new dataset (Poneypot)

Add transfer learning environment
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Thanks, Questions ?
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