DYNAMO:

Towards Automated Network Attack Attribution via Density-Aware Active Learning

19/01/2024

Hélène Orsini. Yufei Han

2. DYNAMO Design

3. Experiment

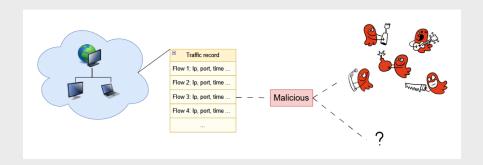
4. Conclusion

Pirat Seminar 2/34

DYNAMO Design Experiment Conclusion

Introduction

Introduction



Pirat Seminar 3/34

DYNAMO Design Experiment

Introduction

Focus

- Network traffic attribution
- Machine learning techniques

Traditional challenges

- **Annotation effort**
- Imbalance in data volumes
- Ever evolving traffic (concept drift)

Pirat Seminar

Our Proposed Framework: DYNAMO

Raw Netflows

Introduction

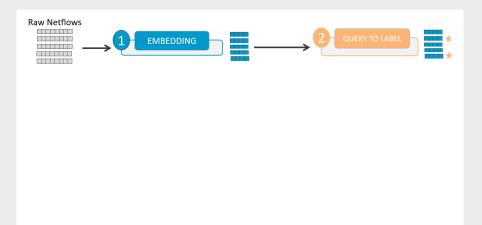
Pirat Seminar 5/34

Our Proposed Framework: DYNAMO

Introduction

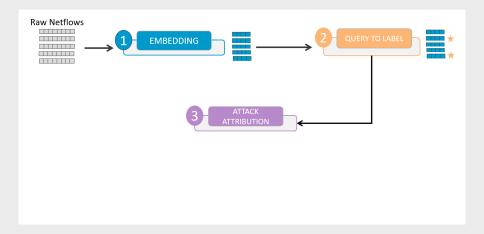
Pirat Seminar 0/34

Our Proposed Framework: DYNAMO



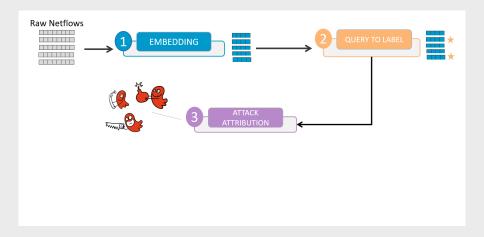
Pirat Seminar 7/34

Our Proposed Framework: DYNAMO



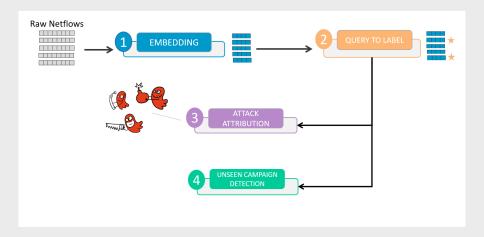
Pirat Seminar 5/34

Our Proposed Framework: DYNAMO



Pirat Seminar 9/34

Our Proposed Framework: DYNAMO



Pirat Seminar 10/34

Our Proposed Framework: DYNAMO



Pirat Seminar 11/34

DYNAMO Design Experiment Conclusion

Related work

Introduction

Attack attribution

- Manual analysis: synthesizing and analyze report
- Machine learning-based: multi-class classification task

Query to Label: Active learning

- Uncertainty-based sampling
- Representation-based sampling

Pirat Seminar 12/34

2. DYNAMO Design

3. Experiment

4. Conclusion

Pirat Seminar 13/34

Method

Introduction

ATTACK

UNSEEN CAMPAIGN

DYNAMO Design Experiment Conclusion

Method

Introduction

1 EMBEDDING
Self-supervised feature learning

2 QUERY TO LABEL

ATTACK ATTRIBUTION 4 UNSEEN CAMPAIGN DETECTION

Pirat Seminar 15/34

DYNAMO Design

Experiment

Conclusion

Method

Introduction

1 EMBEDDING
Self-supervised feature learning

2 QUERY TO LABEL

Density-aware active learning

ATTACK ATTRIBUTION 4 UNSEEN CAMPAIGN DETECTION

Pirat Seminar 16/34

DYNAMO Design

Experiment

Conclusion

Method

Introduction

EMBEDDING Self-supervised feature learning

Density-aware active learning

ATTACK Attack campaigns ML Classifier

DYNAMO Design

Experiment Conclusion

Method

Introduction

EMBEDDING Self-supervised feature learning

ATTACK Attack campaigns ML Classifier Density-aware active learning

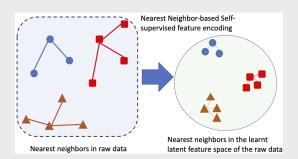
Unseen attack campaigns ML detector

Nearest neighbor-based self-supervised feature encoding

EMBEDDING

Raw feature vectors from Netflow : GraphSage method

$$\underset{\theta}{\operatorname{arg\,min}} - \frac{1}{nK} \sum_{i=1}^{n} [\sum_{k=1}^{K} log(\sigma(h_{\theta}^{T}(x_{i})h_{\theta}(x_{i}^{NN,k}))) - \lambda \sum_{j,x_{v} \notin \mathsf{KNN}(x_{i})} log(\sigma(-h_{\theta}^{T}(x_{i})h_{\theta}(x_{v})))]$$

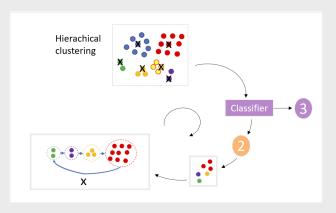


Pirat Seminar 19/34

Density-aware active learning

Introduction

ATTACK



Unseen campaingn strategy

Pu learning

Train a classifier to distinguish between positive and negative.

Learning phase: Positive and Unlabelled (only some of the positive examples in the training data are labeled and none of the negative examples are)

$$\begin{split} & g_{\phi}^{\text{pu}} = \arg\min_{\phi} \frac{\pi}{n_p} \sum_{x_i \in S} [\ell(g_{\phi}^{\text{pu}}(h_{\theta}(x_i)), y_i = +1) - \ell(g_{\phi}^{\text{pu}}(h_{\theta}(x_i)), y_i = \\ -1)] + \frac{1}{n_u} \sum_{x_i \in X_{\text{unlabeled}}} \ell(g_{\phi}^{\text{pu}}(h_{\theta}(x_i)), y_i = -1) \end{split}$$

- 1. Introduction
- 2. DYNAMO Design

3. Experiment

4. Conclusion

Pirat Seminar 22/34

Goals

Introduction

- Q1 Raw vs Embedded
- Q2 Effectiveness of DYNAMO's density-aware active learning module ?
- Q3 Effectiveness ML-based unseen campaign detection ?

Set up

Introduction

Dataset: CTU13

D_{attr}^{test}	D_{ood}^{test}
D_{attr}^{train}	D_{ood}^{train}

Scenario	Flows	%
1	39933	9,23
2	18 8839	4,35
3	26 759	6,18
4	1 719	0,4
5	695	0,16
6	4 431	1,02
7	37	0,0085
8	5 052	1,17
9	179 880	41,57
10	106 315	24,57
11	8 161	1,89
12	2 143	0,50
13	38 791	8 96

Dataset: CTU13

D_{attr}^{test}	D_{ood}^{test}
D_{attr}^{train}	D_{ood}^{train}

Scenario	Flows	%
1	39933	9,23
2	18 8839	4,35
3	26 759	6,18
4	1 719	0,4
5	695	0,16
6	4 431	1,02
7	37	0,0085
8	5 052	1,17
9	179 880	41,57
10	106 315	24,57
11	8 161	1,89
12	2 143	0,50
13	38 791	8,96

Baseline QUERY TO LABEL

- Select p% of D_{attr}^{train} (1k, 2k, 3k, 4k, and 5k)
- Random, UAL, and DYNAMO

Pirat Seminar 25/34

Set up

Introduction

Dataset: CTU13

Scenario	Flows	%
1	39933	9,23
2	18 8839	4,35
3	26 759	6,18
4	1 719	0,4
5	695	0,16
6	4 431	1,02
7	37	0,0085
8	5 052	1,17
9	179 880	41,57
10	106 315	24,57
11	8 161	1,89
12	2 143	0,50
13	38 791	8,96

Baseline Query TO LABEL

- Select p% of D_{attr}^{train} (1k, 2k, 3k, 4k, and 5k)
- Random, UAL, and DYNAMO

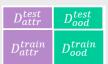
Attack attribution

- Gradient Boosting Trees, Label Spreading
- Macro F1, Balanced Accuracy

Set up

Introduction

Dataset: CTU13



Scenario	Flows	%
1	39933	9,23
2	18 8839	4,35
3	26 759	6,18
4	1 719	0,4
5	695	0,16
6	4 431	1,02
7	37	0,0085
8	5 052	1,17
9	179 880	41,57
10	106 315	24,57
11	8 161	1,89
12	2 143	0,50
13	38 791	8,96

Baseline QUERY TO LABEL

- Select p% of D_{attr}^{train} (1k, 2k, 3k, 4k, and 5k)
- Random, UAL, and DYNAMO

Attack attribution

- Gradient Boosting Trees, Label Spreading
- Macro F1, Balanced Accuracy

Unseen campaign detection

- ISO, OCSVM, and PU
- Macro F1. AUC

Pirat Seminar

Results - Attack attribution Q1

Mean ± Standard deviation of GBT trained with the full supervision method

NB	Ra	ıw	Embedding		
	Macro F1	Macro F1 Balanced Acc		Balanced Acc	
29,918 (p=20%)	0.644 ∓ 0.012	0.637 = 0.015	0.770 ∓ 0.011	0.74 ∓ 0.015	
59,835 (p=40%)	0.687 ∓ 0.009	0.648 ∓ 0.010	0.780 ∓ 0.006	0.754 ∓ 0.007	
89,754, (p=60%)	0.675 ∓ 0.006)	0.637 ∓ 0.006	0.792 ∓ 0.004	0.765 = 0.005	
119,671 (p=80%)	0.685 ∓ 0.006)	0.665 ∓ 0.006	0.801 ∓ 0.002	0.772 ∓ 0.003	
149,589 (p=100%)	0.674 ∓ 0.006	0.670 ∓ 0.002	0.805 ∓ 0.002	0.786 ∓ 0.003	

Introduction

Embedded data increases both macro-F1 score and balanced accuracy.

Results - Attack attribution Q2

Mean ± Standard deviation of Macro F1-score

Attack attribution with the latent feature learned by the self-supervised learning module							
	Random Selection		DYNAMO		UAL		
NB	GB	LS	GB	LS	GB	LS	
1000 (p=0.7%)	0.611 = 0.024	0.637 ∓ 0.036	0.695 ∓ 0.024	0.631 ∓ 0.000	0.607 ∓ 0.016	0.574 ∓ 0.067	
2000 (p=1.3%)	0.653 ∓ 0.018	0.694 ∓ 0.022	0.745 ∓ 0.021	0.677 ∓ 0.000	0.613 ∓ 0.016	0.608 ∓ 0.017	
3000 (p=2.0%)	0.673 = 0.017	0.712 ∓ 0.016	0.764 ∓ 0.016	0.688 ∓ 0.000	0.723 ∓ 0.013	0.654 ∓ 0.027	
4000 (p=2.6%)	0.686 ∓ 0.013	0.723 ∓ 0.049	0.781 ∓ 0.015	0.707 ∓ 0.000	0.773 ∓ 0.002	0.689 ∓ 0.019	
5000 (p=3.3%)	0.697 = 0.013	0.732 ∓ 0.012	0.791 ∓ 0.011	0.708 ∓ 0.000	0.785 ∓ 0.009	0.702 ∓ 0.020	

Dynamo outperforms UAL (GB, LS) and Random (GB)

Results - Unseen campaign Q3

Mean ± Standard deviation of Macro F1-score

	Unseen campaign detection with the latent feature learned by the self-supervised learning module								
	Random Selection		DYNAMO		UAL				
NB	ISO	OCSVM	PU	ISO	OCSVM	PU	ISO	OCSVM	PU
1000 (p=0.7%)	0.748 ∓ 0.005	0.853 ∓ 0.000	1.000 ∓ 0.000	0.913 ∓ 0.007	0.921 ∓ 0.005	1.000 ∓ 0.000	0.832 ∓ 0.043	0.898 ∓ 0.013	1.000 ¥ 0.000
2000 (p=1.3%)	0.754 ∓ 0.005	0.762 ∓ 0.000	1.000 ∓ 0.000	0.905 ∓ 0.010	0.913 ∓ 0.006	1.000 ∓ 0.000	0.817 ∓ 0.044	0.880 ∓ 0.016	1.000 ∓ 0.000
3000 (p=2.0%)	0.672 ∓ 0.005	0.696 ∓ 0.000	1.000 ∓ 0.000	0.765 = 0.009	0.909 ∓ 0.008	1.000 ∓ 0.000	0.789 ∓ 0.018	0.860 ∓ 0.021	1.000 ∓ 0.000
4000 (p=2.6%)	0.758 ∓ 0.007	0.687 ∓ 0.000	1.000 ∓ 0.000	0.897 ∓ 0.010	0.904 ∓ 0.010	1.000 ∓ 0.000	0.789 ∓ 0.046	0.848 ∓ 0.048	1.000 ∓ 0.000
5000 (p=3.3%)	0.754 ∓ 0.007	0.689 ∓ 0.026	1.000 ∓ 0.000	0.891 = 0.009	0.898 ∓ 0.008	1.000 ∓ 0.000	0.794 ∓ 0.059	0.842 ∓ 0.068	1.000 ∓ 0.000

Pu performs best

Dynamo provide better result for ISO and OCSVM

- 1. Introduction
- 2. DYNAMO Design
- 3. Experiment

4. Conclusion

Pirat Seminar 31/34

Key Takeaway

Introduction

- ML-Based attack attribution challenges: scarce label data, imbalanced campaign distribution
- Self-Supervised feature encoding boosts attack attribution
- Density-aware active learning helps overcome imbalanced data issue
- Positive-Unlabeled learning outperforms for unseen campaign detection

DYNAMO Design Experiment Conclusion

Summary and perspectives

- DYNAMO, a weakly supervised ML-based pipeline designed for automated network attack attribution without requiring exhaustive labeling of attack campaigns
- Density-aware Machine Learning
- Positive-unlabeled weakly supervised learning

Next steps

Introduction

- Adapt to new dataset (Poneypot)
- Add transfer learning environment

Pirat Seminar 33/34

Thanks, Questions?

