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• >120 million new malware samples per year! (~4/sec) and an estimate of 
265 billion USD annually by 2031!

• Exists in many flavors (MS PE, MSI, ELF, JAR archives, Android apps, 
scripts, PDF, MS Office macros, etc.)

• Two main approaches : static and dynamic analysis

• We focus on Windows malware dynamic analysis, using Cuckoo 
sandbox
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MALWARE ANALYSIS 101



CUCKOO ANALYSIS PIPELINE
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It is difficult to map these data
to the actual effect the
software has on the system
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CUCKOO ANALYSIS PIPELINE
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• A graphical representation of dynamic analysis traces

• Heterogeneous graph

• Shows resources given by the OS: file system, registry keys, 
network connection, etc.

• Links related resources
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WHAT IS BAGUETTE?
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NODE TYPES AND RELATIONS



• Any high-level read or write operations involve many elementary read 
and write system calls

• We merge them into « diff » nodes summarizing data transfer

• Diff nodes include all the data read from and written into a socket or a file

• That way, we can easily analyzed read and written data

• Entropy computations

• ASCII or binary data

• Header analysis
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DIFF NODES
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BAGUETTE EXAMPLE



• We use graph patterns called « metagraphs »

• They are graphs where: 

• nodes can match one or several BAGUETTE nodes

• edges can match one or several BAGUETTE edges

• nodes can also have conditions of BAGUETTE attributes

• Since BAGUETTE are high-level, we can manually write metagraphs that 
match specific behaviors
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METAGRAPHS TO ANALYZE A BAGUETTE
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METAGRAPH EXAMPLES

Covert Execution

Changed File Type

Auto-Run

High Entropy Writing

Extraction and Execution



• We analyze three malware families:
• GCleaner, a file dropper

• SnakeKeyLogger, a key logger and spyware

• LockBit, a ransomware
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EXPERIMENTS

Metagraph
p n σ p n σ p n σ

High-Entropy Writing 97.57% 1.53 0.59 13.76% 1.08 0.28 28.57% 2450.0 1878.0
Changed File Type 97.57% 1.0 0.0 4.82% 1.05 0.21 14.29% 1.0 0.0
Covert Execution 98.38% 1.0 0.0 0% - - 0% - -
Extraction and Execution 98.38% 2.97 0.17 13.53% 1.0 0.0 0% - -
Auto-Run 0% - - 0% - - 28.57% 1.0 0.0

GCleaner (247) SnakeKeyLogger (436) LockBit (7)

p : Proportion of matches, n : average number per matching sample, σ : standard deviation per matching sample

• Quite different proportions depending on families

• Tells us how to select samples (for example, which sample executed 
their payloads)
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LOCKBIT ANALYSIS
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LOCKBIT ANALYSIS
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LOCKBIT ANALYSIS
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This was the state of our research at the time we submitted to 
THCon… But since, we had some fun

Next research question: how to automatically create metagraphs 
from a dataset of malware ?

Still a work in progress

WHAT NEXT?



28

Given a unlabelled dataset of malware samples, how can we:

• Recover clusters of behaviors that hopefully match the families/classes

• Recover the behavioral patterns characteristic of each of these clusters
With some constrains:

• In an unsupervised way (no labels)

•Without expert knowledge on malware analysis, just on system 
programming

NEW GOAL
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CROISSANT!
Clustering Research Ontological Interface with Systemic Signature Assimilation of 
Novel Tactics
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EXPERIMENTAL DETAILS

• Dataset: 13 families, 100 samples for each family
• MetaGraph library generation is an iterative process:
• Generate new valid metagraphs from the previous library
• Search them across the BAGUETTE dataset
• Select the best ones according to some metrics
• Repeat

• A classic genetic algorithm, with two hurdles:
• How to mutate metagraphs?
• How to select the best ones?
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EXPERIMENTAL DETAILS

• What is a good metagraph?
• A metagraph that is rarely present?  probably not significative→
• A metagraph that is always present?  probably typical Windows →

behavior, like DLL imports, etc., not interesting for malware 
analysis

• A metagraph that are very common in some software but very 
rare in others?  sounds like something akin to a signature!→

• But what does it mean, mathematically?
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EXPERIMENTAL DETAILS

• We experimented with several metrics, I’ll describe the best one
• TF-ISF (Term-Frequency / Inverse Sample Frequency) inspired from 

TF-IDF
• For one metagraph, it’s the multiplication of two terms:
• The number of occurrences in all BAGUETTEs
• The logarithm of the inverse of the number of BAGUETTEs 

matching this metagraph
• Intuitively, we want common metagraphs that are only present in a 

few BAGUETTEs
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EXPERIMENTAL DETAILS

• Clustering is made in a vector space where each BAGUETTE graph is 
described by the number of matches for each metagraph

• So, if we have 100 metagraphs, each BAGUETTE is represented by a 
vector of 100 numbers

• We tried many clustering algorithms, and finally chose spectral 
clustering
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RESULTS?
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Given a unlabelled dataset of malware samples, how can we:

• Recover clusters of behaviors that hopefully match the 
families/classes  encouraging results→

• Recover the behavioral patterns characteristic of each of these 
clusters

GOALS
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AND THE EXPLANATIONS? 
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AND THE EXPLANATIONS? 
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For cluster #0
AND THE EXPLANATIONS? 

Still something to improve…
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NEXT STEPS

• This is still a work in progress
• Proper statistical analysis

• More iterations to learn more complex metagraphs (with random 
selection)

• Clustering algorithm comparison
• Average accuracy metrics estimation

• Comparison to SOTA of heterogeneous graph pattern mining
• Better metagraph generation rules with better explainability



• BAGUETTE encapsulates the behavioral information of malware samples in a 
reasonable scale.

• Metagraphs allows to make advanced searches through a dataset of 
BAGUETTES.

• BAGUETTES give a visualization advantage when analyzing malware samples.

• From BAGUETTE, CROISSANT can:
• Learn explainable behavioral signatures
• Can differentiate malware families 
• No need of labelled data
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CONCLUSION
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