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Context

Context of this work
• Work on a network intrusion detection system that monitors network packets
• Anomaly detection: we modelize legitimate behavior based on benign training data with

no access to attacks
• Based on Sec2graph by a previous PhD (Laetitia Leichtnam)

Goals
• Have good detection performances with limited false positives
• Provide explanations for alarms
• Detect complex APT (Advanced Persistent Threat) attacks
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Overview of the approach

Structure of the approach
• Probes capture the data. For the moment, we only rely on network data
• These data are merged into a graph structure
• The graph is transformed into a format usable with a deep learning model
• The model affects an anomaly score to each data point. From that scores, we can point

out what part of the data is anomalous
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Data capture

Probe
For now, we rely on public datasets, most notably:

• CIC-IDS2017 (5 days of traffic, 14 machines)
• CSE-CIC-IDS2018 (several weeks, 500 machines)
• DAPT2020 (5 days, 5 machines)

We work directly on the pcap files (the raw capture) and not on the higher levels features

Packet dissector
• We use Zeek (formerly Bro) to dissect the packets
• Zeek creates multiple log files, one for each category of events (network connection,

HTTP request, x509 certificates, etc.)
• All events are associated with one network connection

Next step: construct a graph from these logs
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Security objects graph built from Zeek’s logs
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Security objects graph

Nodes
• Each node type corresponds to a "security object":

• protocols: DNS, SSH, DCERPC, SNMP, FTP, DHCP, HTTP, SMTP
• network data: port, MAC address, IP address, network connection, URI, domain
• and others

• Nodes contain a set of attributes related to these objects

Edges
• Edges are typed and oriented
• They do not contain attributes
• An edge between two nodes means that these two nodes are found within the same event
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All nodes and edge types
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Motivation

Why a graph?
• Graph can easily integrate heterogeneous data
• Graph help see the overall structure of the data

Drawbacks
• Graphs hide temporal relations
• Graphs are not straightforward to use with deep learning models
• Even worse with heterogeneous graphs

This structure was mostly designed to help security experts to explore the data and to connect
network data with indicators of compromise (IoC)
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Graph encoding

Why is the issue?
• We cannot feed the model with the whole graph ⇒ we process the graph edge by edge
• Deep learning models generally require a fixed-sized vector with numerical values:

• To encode discrete values (like port number or protocol), we use one-hot encoding (one
feature per value)

• To encode continuous values (like connection duration), we use a Gaussian mixture model
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Deep learning model: autoencoder

Autoencoder
• An autoencoder is a deep learning model with the shape

of a bow tie
• During the learning phase, the model tries to reconstruct

its input data as faithfully as possible
• Due to the bow tie structure, the model needs to find a

way to compress the input data by learning the
underlying structure of the data

• Once learned, the model is very effective at
reconstructing inputs that resemble the training data

• But the compression fails on data too different from the
training data!

• We use the reconstruction error as an anomaly score
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Summary
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Performances on DAPT2020

Performances
• Experiment on DAPT2020 dataset with APT attacks
• Comparison with the best unsupervised solution proposed by the article (SAE)
• Sec2graph is almost always better
• It has a good recall (it correctly identifies a lot of attacks) and a reasonable false positive

rate. However, it’s not mature yet for real-world application

AUC ROC AUC PR
APT attack step SAE Sec2graph SAE Sec2graph

Reconnaissance 0.641 0.888 0.262 0.613
Foothold Establishment 0.846 0.924 0.498 0.480

Lateral movement 0.634 0.802 0.014 0.603
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Performances on CIC-IDS2017

Performances
Recall is mostly good but we have a very high false positive (22%!) on Thursday

We’ll see why later. . .
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How to explain the predictions?

The issue
• Explanations could help us understand the false positives
• There exists a lot of explanation techniques. . . (LIME, salient maps, counterfactual

explanation. . . )
• . . . but little work on explanations for unsupervised learning!

First, naive approach
• We can compute the contribution of each feature to the global reconstruction error
• However, we found out this idea does not produce satisfactory explanations:

• Some features are always difficult to reconstruct because of their high variance
• Some features are always very faithfully reconstructed, and even a small reconstruction error

may reveal an anomaly
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How to explain the predictions?

Our proposal: a statistical explanation
• We split the train data into a training dataset and a calibration dataset
• After learning, we compute reconstruction errors on the calibration dataset
• For each feature, we estimate its distribution of reconstruction error
• During inference, we aggregate the p-value of the reconstruction error for each feature
• The detection threshold is based on this aggregation
• It is easy to isolate the contribution of each feature and output the most influential

features to an expert

Evaluation
• We did not perform (yet) a scientific evaluation with experts
• However, we use it to analyze the false positive on CIC-IDS2017
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What is the issue with CIC-IDS2017?

Not only one. . .
• Labeling issue: CIC-IDS2017 has a scan attack on Thursday that is not corrected labeled.

About 70,000 flows of scan are labeled as "benign"!
• Duplication issue: probably due to a badly configured probe, on average 500,000 packets

are duplicated per day. It caused the CSV files to contain bad data
• And a few minors issues

Corrected CIC-IDS2017 files: https://gitlab.inria.fr/mlanvin/crisis2022

Why wasn’t it found before?
Turns out that the missing attack has duplicated packets, so its csv files didn’t look like the
other scan attacks. Consequence: supervised methods miss this unlabeled attack

These results make us confident in the usefulness of our explanation method
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Updated results on CIC-IDS2017

Before CIC-IDS2017 correction After CIC-IDS2017 correction
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Conclusion and future work

Conclusion
• An anomaly detection approach relying on a security objects graph
• Performances are satisfactory but the false positive rate is still too high

Future work
• Edges should not be processed independently: embeddings and attention mechanisms

could help exploit the neighborhood
• Time series analysis is crucial for APT detection: we plan to add new edges between

network connections in the security objects graph, with a temporal semantics
• The explanation requires formal evaluation: several evaluation methods are possible, e.g.,

comparing with other XAI techniques or using experts feedback
• The security graph objects could be extended with other data sources, e.g., application

logs
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