Al for Cybersecurity: Three Applications for Network Security

Pierre-François Gimenez Inria researcher PIRAT research team

Summer School – Al-driven Cyber Security July 1st, 2025

Background

- 2018: PhD on machine learning at IRIT, Toulouse
- Since 2020: Researcher in a security team at Inria, Rennes
- I publish in both AI and security conferences

$\mathsf{AI} \cap \mathsf{Cybersecurity} = \texttt{?}$

There are many applications of AI to cybersecurity!

- Side channel analysis
- Malware analysis
- Network intrusion detection
- Security data generation

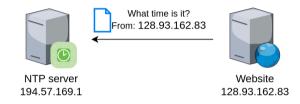
Background

- 2018: PhD on machine learning at IRIT, Toulouse
- Since 2020: Researcher in a security team at Inria, Rennes
- I publish in both AI and security conferences

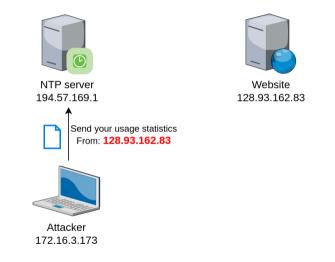
$\mathsf{AI} \, \cap \, \mathsf{Cybersecurity} = \texttt{?}$

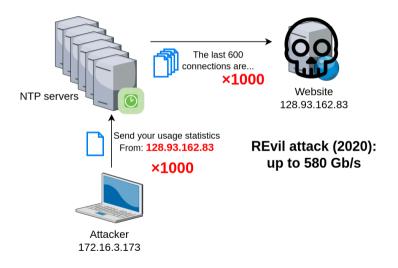
There are many applications of AI to cybersecurity!

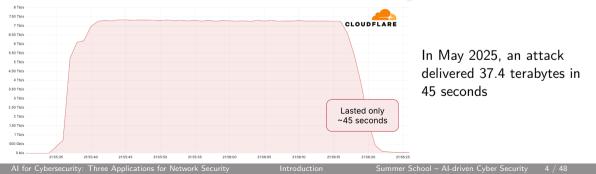
- Side channel analysis
- Malware analysis
- Network intrusion detection
- Security data generation


The following work were mostly done during Maxime Lanvin and Adrien Schoen PhDs

Website 128.93.162.83







Introduction

Systems are under attack

- Many untargeted, opportunistic attacks like password bruteforce
- Some targeted attacks with a huge power (e.g., DDoS attacks)
- Some very sophisticated attacks months or years in the making (SolarWinds, Stuxnet...)

Cloudflare defenses autonomously block a 7.3 Tbps DDoS attack

Information system security

Information system security

- Prevent the attack, detect it, and react
- Detection with **IDS**: Intrusion Detection System

Detection relies on observation

- System : OS and applications logs
- Network : network communications

Constraints

- Partial and heterogeneous observations
- Adversarial context: the attacker hides!

2024-05-06T23:24:16.806598+02:00 stellar-sheep sshd[16039]: Failed password for pfg from 192.168.1.36 port 48650 ssh2

```
"ts": 1591367999.305988,
"id.orig_h": "192.168.4.76",
"id.resp_h": "192.168.4.1",
"id.resp_p": 53, "proto": "udp",
"service": "dns", "duration":
0.066851, "orig_bytes":
62, "resp_bytes": 141,
"conn_state": "SF", "orig_pkts":
2, "orig_ip_bytes": 118,
"resp_pkts": 2, "resp_ip_bytes":
197
```


Introduction

- ② AI for network intrusion detection
- S Explainable Al for anomaly detection
- 4 Al for synthetic data generation

5 Conclusion

Al for network intrusion detection

Network data example

Network data

- Raw data consist of packets, regrouped in conversation
- Cybersecurity analysis typically rely on network flow records
- Network flows describe conversations statistically

No.	Time	Source	Destination		Length Info
	17 0.700049029	193.51.196.138	131.254.252.23	DNS	126 Standard query response 0x170d AAAA pfgimenez.fr SOA dns12.ovh.net
	18 0.700149062	131.254.252.23	185.199.109.153	TCP	74 42578 - 443 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=17316
	19 0.718482667	185.199.109.153	131.254.252.23	TCP	74 443 - 42578 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1440 SACK_PERM
	20 0.718506446	131.254.252.23	185.199.109.153	TCP	66 42578 - 443 [ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=1731066668 TSecr=2
	21 0.718615194	131.254.252.23	185.199.109.153	TLSv1.3	
	22 0.736561279 23 0.742171740	185.199.109.153 185.199.109.153	131.254.252.23 131.254.252.23	TCP TLSv1.3	66 443 - 42578 [ACK] Seq=1 Ack=534 Win=143872 Len=0 TSval=2597043199 TSec
	24 0.742171740	131.254.252.23	185.199.109.153	TCP	519 Server Hello, Change Cipher Spec, Application Data, Application Data, 66 42578 - 443 [ACK] Seq=534 Ack=454 Win=63872 Len=0 TSval=1731066692 TSt
	25 0.743771063	131.254.252.23	185.199.109.153	TLSv1.3	3 130 Change Cipher Spec, Application Data
	26 0.743855851	131.254.252.23	185,199,109,153	TLSv1.3	3 158 Application Data
	27 0.747930849	131.254.252.23	185.199.109.153	TLSv1.3	
	28 0.763212420	185,199,109,153	131,254,252,23	TCP	66 443 42578 [ACK] Seg=454 Ack=598 Win=143872 Len=0 TSval=2597043226 TS
	29 0.765612735	185.199.109.153	131.254.252.23	TCP	66 443 42578 [ACK] Seg=454 Ack=699 Win=143872 Len=0 TSval=2597043226 TS
	30 0.765612978	185.199.109.153	131.254.252.23	TLSv1.3	
	31 0.765763178	131.254.252.23	185.199.109.153	TLSv1.3	
	32 0.766914783	185.199.109.153	131.254.252.23	TCP	66 443 - 42578 [ACK] Seq=519 Ack=1190 Win=145408 Len=0 TSval=2597043230
	33 0.784918198	185.199.109.153	131.254.252.23	TCP	66 443 - 42578 [ACK] Seq=519 Ack=1221 Win=145408 Len=0 TSval=2597043248
	34 0.851003286	185.199.109.153	131.254.252.23	TLSv1.3	
	35 0.851204999	131.254.252.23	185.199.109.153	TLSv1.3	
	36 0.857984663 37 0.857947165	131.254.252.23 131.254.252.23	185.199.109.153 185.199.109.153	TLSv1.3 TLSv1.3	
	37 0.857947165 38 0.860272768	131.254.252.23	185.199.109.153 185.199.109.153	TLSv1.3 TLSv1.3	
	39 0.864697086	131.254.252.23	185.199.109.153	TLSv1.3	3 102 Application Data
	40 0.867657307	185.199.109.153	131,254,252,23	TCP	66 443 - 42578 [ACK] Seg=777 Ack=1256 Win=145408 Len=0 TSval=2597043330
	41 0.877029712	185.199.109.153	131.254.252.23	TCP	66 443 - 42578 [ACK] Seg=777 Ack=1250 Win=146432 Len=0 TSval=2597043338
	42 0.877029938	185,199,109,153	131.254.252.23	TCP	66 443 . 42578 [ACK] Seg=777 Ack=1623 Win=147456 Len=0 TSval=2597043338 1
	43 0,879100357	185,199,109,153	131,254,252,23	TCP	66 443 42578 [ACK] Seg=777 Ack=1719 Win=147456 Len=0 TSval=2597043342
	44 0,883225268	185,199,109,153	131,254,252,23	TCP	66 443 42578 [ACK] Seg=777 Ack=1755 Win=147456 Len=0 TSval=2597043346
	45 0.959652163	185.199.109.153	131.254.252.23	TLSv1.3	
	46 0.959652475	185.199.109.153	131.254.252.23	TLSv1.3	
	47 0.959746916	131.254.252.23	185.199.109.153	TCP	66 42578 443 [ACK] Seq=1755 Ack=1000 Win=64128 Len=0 TSval=1731066909
	48 0.969032125	131.254.252.23	185.199.109.153	TLSv1.3	
	49 0.963572039	185.199.109.153	131.254.252.23	TLSv1.3	
	50 0.963712830	131.254.252.23	185.199.109.153	TLSv1.3	3 136 Application Data, Application Data
4					
FI	rane 25: 130 byte:	on wire (1040 bits), 130 bytes 0000		10 01 28 a0 6b 9e e8 cd 08 60 45 09
> E	thernet II, Src: 1	intel_9e:e8:cd (28:a			1 49 99 49 96 89 c3 83 fe fc 17 b9 c7 t J0 0
		Version 4, Src: 131.			2 01 bb 9f cc 0c 13 4b 12 81 19 80 18 m·R····K····
		l Protocol, Src Por			1 00 00 01 01 08 0a 67 2d fb 45 9a cb
	ransport Layer Se	aver: Change Cipher			3 03 00 01 01 17 03 03 00 35 28 3e d75(> e 66 8d 61 f7 5a 01 db ff b4 44 d3 32 a.~a. ZD.2
		Change Cipher Spec			e c o b c c c c c c c c c c c c c c c c c
	Version: TLS	1.2 (evenage outprier spec	(20) 0000		7 56 8d 93 5c 19 ff 9b 33 3d 55 59 14 V\3=UY-
	Length: 1	*: [010000]			V.
	Change Cipher	Spec Message			<i>y</i> .
		aver: Application D	ata Brotocol:		

ts,proto,src_ip,dst_ip,dst_port,fwd_packets,bwd_packets,fwd_bytes,bwd_bytes
1730800143,TCP,131.254.252.23,216.58.213.78,443,33,41,5988,1950

Two categories of detectors

Signature-based detection

Date: 2024-04-25 10:24:52+02:00 Source IP: 194.57.169.1 Destination IP: 128.93.162.83

Signature : alert udp any any -> any 123 (content:"|00 02 2A|"; offset:1; depth:3; byte_test:1,1&,128,0; byte_test:1,&,4,0; byte_test:1,&,2,0; byte_test:1,&,1,0; threshold: type both, track by_dst,count 2, seconds 60);

Potential attack using NTP!

Signatures database

- + quick, clear
- regular updates, only documented attacks

Anomaly detection

Date: 2024-04-25 10:24:52+02:0 Source IP: 194.57.169.1 Destination IP: 128.93.162.83

Anomaly score: 7,6

Normal behavior model (generally with AI)

- + can detect undocumented attacks
- false positives, no alert description

Two categories of detectors

Signature-based detection

Date: 2024-04-25 10:24:52+02:00 Source IP: 194.57.169.1 Destination IP: 128.93.162.83

Signature : alert udp any any -> any 123 (content:"|00 02 2A|"; offset:1; depth:3; byte_test:1,1&,128,0; byte_test:1,&,4,0; byte_test:1,&,2,0; byte_test:1,&,1,0; threshold: type both, track by_dst,count 2, seconds 60);

Potential attack using NTP

Signatures database

- + quick, clear
 - regular updates, only documented attacks

Anomaly detection

Date: 2024-04-25 10:24:52+02:00 Source IP: 194.57.169.1 Destination IP: 128.93.162.83

Anomaly score: 7,6

Normal behavior model (generally with AI)

- + can detect undocumented attacks
- false positives, no alert description

AI for network security

The constraints of AI

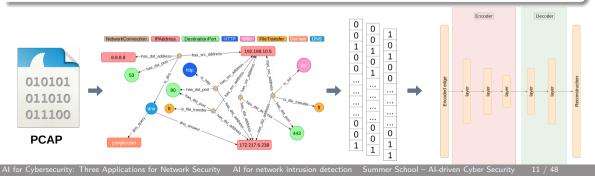
- Typically, AI works on vectors
- These vectors must always have the same size
- In practice, it is not always the case

The need of representation

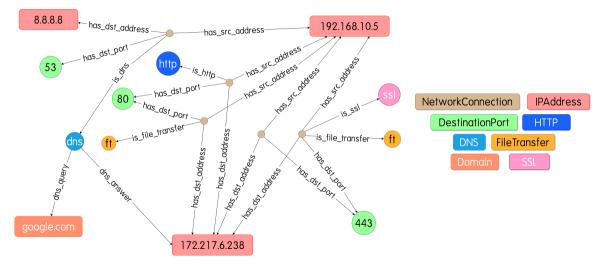
Several techniques are used to transform data into a fixed vector

- Images are rescaled
- Words are split into subwords (tokens)

In network security


- Network flow are vectors
- There is no standard way to analyze packets

Overview of our approach Sec2graph


Structure of our approach

- Probes capture the network data
- These data are merged into a graph structure
- The graph is transformed into a format usable with a deep learning model
- The model affects an anomaly score to each data point

Security objects graph example

Security objects graph

Nodes

- Each node type corresponds to a "security object":
 - protocols: DNS, SSH, DCERPC, SNMP, FTP, DHCP, HTTP, SMTP
 - network data: port, MAC address, IP address, network connection, URI, domain
 - and others
- Nodes contain a set of attributes related to these objects

Edges

- Edges are typed and oriented
- They do not contain attributes
- An edge between two nodes means that these two nodes are found within the same event

Anomaly detection: Autoencoder (AE)

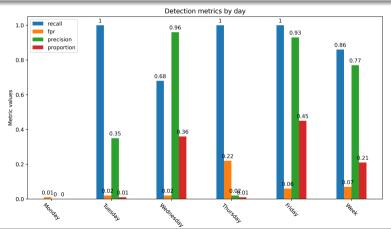
Autoencoder

An autoencoder is a deep learning architecture with a bow-tie shape

Learning

Minimisation of the reconstruction error between the input vector and its reconstructed version

Detection


Raise an alert when the reconstruction error is above a threshold

Performances on CIC-IDS2017

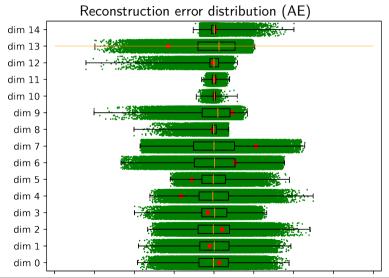
Performances

Recall is mostly good but we have a very high false positive (22%!) on Thursday

Explainable AI for anomaly detection

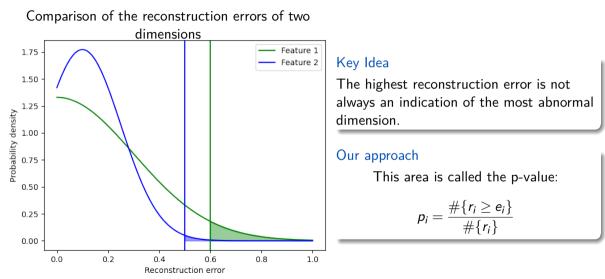
How to explain the predictions?

The issue


- Explanations could help us understand the false positives
- There exists a lot of explanation techniques... (LIME, salient maps, counterfactual explanation...)
- ... but little work on explanations for unsupervised learning!

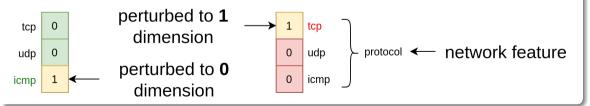
First, naive approach

- We can compute the contribution of each feature to the global reconstruction error
- However, we found out this idea does not produce satisfactory explanations:
 - Some features are always difficult to reconstruct because of their high variance
 - Some features are always very faithfully reconstructed, and even a small reconstruction error may reveal an anomaly


What it looks like

Al for Cybersecurity: Three Applications for Network Security Explainable Al for anomaly detection Summer School – Al-driven Cyber Security 18 / 48

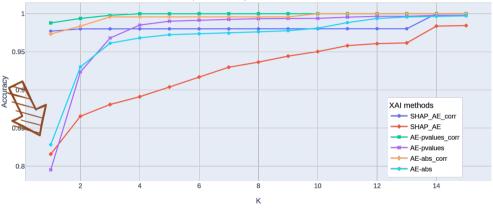
Limitations


Experimental protocol

Protocol

- Inject noise in a known network characteristic of vectors
- Assess ability of XAI methods to find the noisy network characteristic

Experiment with AE-abs (intuitive method), SHAP_AE (state of the art), AE-pvalues (our method)


Example of noise insertion in the protocol characteristic

Benchmark results

Top-K Accuracy for network features

Top-K accuracy

Proportion of samples for which the right explanation is among the Top-K explanations. But sometimes several explanations are correct...

AI for Cybersecurity: Three Applications for Network Security Explainable AI for anomaly detection Summer School – AI-driven Cyber Security 21 / 48

1 + 1 = 0

Where is the error?

- 0 should be 2
- + should be -
- 1 should be -1
- should be >
- "(mod 2)" is missing
- "is false" is missing

1 + 1 = 0

Where is the error?

- 0 should be 2
- + should be -
- 1 should be −1
- should be >
- "(mod 2)" is missing
- "is false" is missing

1 + 1 = 0

Where is the error?

- 0 should be 2
- + should be -
- 1 should be -1
- should be >
- "(mod 2)" is missing
- "is false" is missing

1 + 1 = 0

Where is the error?

- 0 should be 2
- + should be -
- 1 should be -1
- should be >
- "(mod 2)" is missing
- "is false" is missing

1 + 1 = 0

Where is the error?

- 0 should be 2
- + should be -
- 1 should be -1
- should be >
- "(mod 2)" is missing
- "is false" is missing

1 + 1 = 0

Where is the error?

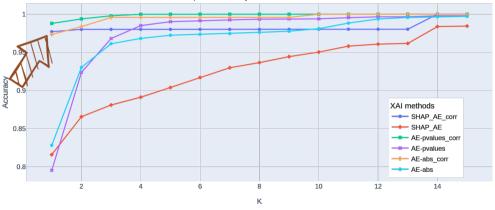
- 0 should be 2
- + should be -
- 1 should be -1
- $\bullet = \mathsf{should} \ \mathsf{be} >$
- "(mod 2)" is missing
- "is false" is missing

1 + 1 = 0

Where is the error?

- 0 should be 2
- + should be -
- 1 should be -1
- = should be >
- "(mod 2)" is missing
- "is false" is missing

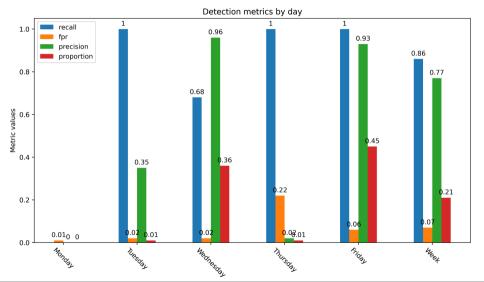
1 + 1 = 0


Where is the error?

- 0 should be 2
- + should be -
- 1 should be -1
- = should be >
- "(mod 2)" is missing
- "is false" is missing

Benchmark results

Top-K Accuracy for network features



A more realistic evaluation

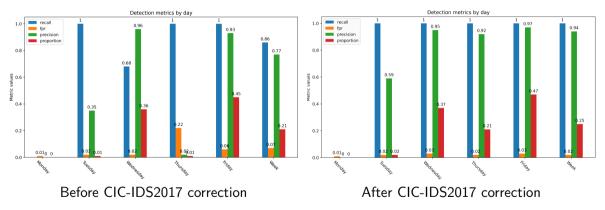
Evaluation modification: accepting correlated features as correct explanations

Remember that?...

AI for Cybersecurity: Three Applications for Network Security Explainable AI for anomaly detection Summer School – AI-driven Cyber Security 24 / 4

What is the issue with CIC-IDS2017?

Not only one...


- Labeling issue: CIC-IDS2017 has a scan attack on Thursday that is not corrected labeled. About 70,000 flows of scan are labeled as "benign"!
- Duplication issue: probably due to a badly configured probe, on average 500,000 packets are duplicated per day. It caused the CSV files to contain bad data
- Shortcut learning possible: the tools use their default user agent
- And a few minors issues

Corrected CIC-IDS2017 files: https://gitlab.inria.fr/mlanvin/crisis2022

These results make us confident in the usefulness of our explanation method

Updated results on CIC-IDS2017

Flawed datasets

Public dataset

- Most IDS research relies on public dataset
- It allows for reproducible results and comparison between methods
- A few datasets are popular: NSL-KDD, CIC-IDS-2017/2018, and a few others

Criticisms

We are not the only ones finding issues in datasets

- NSL-KDD is still used but obsolete
- 4 articles have been published on issues on CIC-IDS-2017 alone
- Other datasets are also criticized

Common issues: unrealistic testbed, duration too low, badly configured tool and probe...

Alternatives

Real data

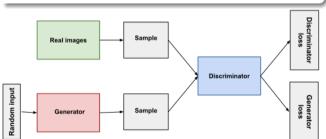
- Difficult to obtain/share due to confidentiality and privacy reasons
- Typically not labeled

Testbeds

- Difficult to create: it must include fake users with online activity with a wide range of behaviors
- Slow: we need one month to generate one month of data

Data generation with AI

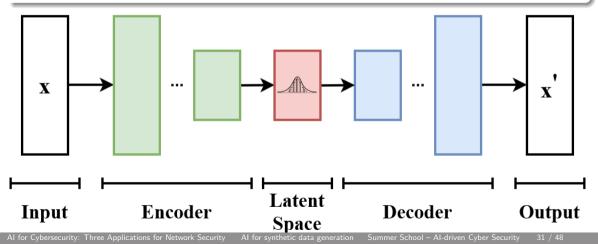
- Could be much faster than testbed
- Is AI mature enough? How to explain the generation process and to evaluate the data?


Al for synthetic data generation

GenAI: GANs

Generative Adversarial Networks

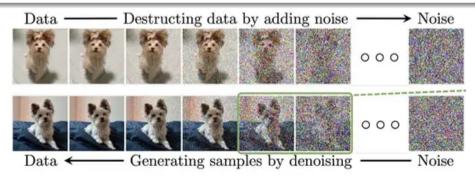
Two neural networks compete: one to generate fake data, the second one to find whether some data is fake or genuine


Image generated with StyleGAN (2019)

GenAI: VAEs

Variational AutoEncoders

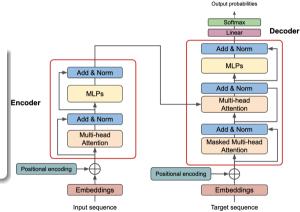
An autoencoder used to generate data by decoding random vectors in the latent space



GenAI: diffusion models

Diffusion models

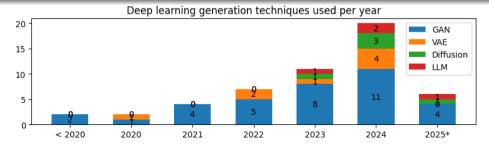
A model trained to "denoise" data. Applied several times in a row to create images from noise.



GenAI: LLMs

Transformers

- A model that predicts the next token based on the previous ones. The generation focuses on the relevant tokens in the context window
- It is the base of LLMs: ChatGPT, Gemini, Mistral, Llama, etc.



GenAl for network generation

And in network generation?

- A quick growth of works on synthetic network traffic generation
- All previous techniques are used to generate synthetic network traffic
- However, the quality of the generated data is still low
- Lack of explainability makes progress slower

GenAl for network generation

A big limitation: dependencies within the data

- Intra-flow dependency
 - the port depends on the destination IP
 - the number of packets depends on the application protocol
- Inter-flow dependency:
 - DNS query then HTTP(S)
 - IMAP request then HTTP(S)

Our work

We propose FlowChronicle as an explainable generation method not based on deep learning

FlowChronicle

FlowChronicle: a novel approach

- Pattern language
 - Captures intra-flow and inter-flow dependencies
 - Summarizes data with non-redundant patterns
- Data generation
 - Produces realistic traffic respecting protocols
 - Preserves temporal dependencies
- Explainability
 - Patterns are interpretable and auditable

FlowChronicle

What is a pattern?

Frequently occurring substructure in data

Pattern Mining

- Define the set of possible patterns, named the "pattern language"
- Find a small set of patterns that best describes the data
- More precisely, we use the patterns to compress the data: higher the compression, better the patterns

Pattern description

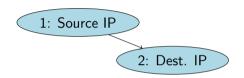

Pattern language

Each pattern has two parts: a partially defined flow, and a Bayesian network

- Fixed values are defined in the partial flow
- the distribution of Free variables is defined in the Bayesian network
- Reused variables are always equal to some Free variable

Partial flows

Bayesian Network



Pattern description

Partial flows

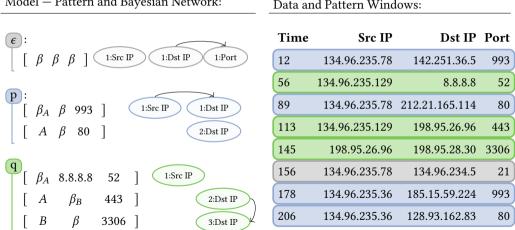
Source IP	Dest. IP	Dest. Port
$\beta_{\mathcal{A}}$	8.8.8.8	53
A	eta	80

Bayesian Network

Example

- Here, there are two flows
- The first flow is contacting 8.8.8.8 on port 53 (DNS). The source IP is random
- The second flow has the same source IP as the first flow, and is contacting a destination IP that is random and depends on the first source IP, on port 80 (HTTP)

Our goal is to learn ("mine") such patterns


Pattern mining algorithm

Pattern Search:

- 1 Initialize Model with an empty pattern
- **2** Generate Pattern Candidates from existing patterns $p \in M$.
 - By extending with an attribute
 - By merging existing patterns
- Itest candidates for addition:
 - Cover the datasets with the patterns
 - Add patterns when it reduces MDL score: $L(D \mid M) + L(M)$

Dataset cover

Model – Pattern and Bayesian Network:

Data and Pattern Windows:

Loss function

Length of data given the model:

$$L(D \mid M) = \sum_{p \in M} (L_{\mathbb{N}}(|W_p|) + L(W_p))$$

where:

$$L(W_{p}) = \sum_{i=1}^{|W_{p}|} \left(L(t_{1} \text{ of } w_{i}) + \sum_{k=2}^{|p|} L(t_{k} \text{ of } w_{i} \mid t_{i-1}) \right) - \log(Pr(w_{i}|BN_{p}, \{w_{j}|j < i\}))$$

Length of Model:

$$L(M) = L_{\mathbb{N}}(|M|) + \sum_{p \in M} L(p)$$

Length of one pattern:

$$L(p) = L_{\mathbb{N}}(|p|) + \left(\sum_{j=1}^{|p|} L(X[j]|p)\right) + L(BN_{p})$$

Data quality evaluation

Hard to evaluate

- No standard metrics
- Evaluation often partial

Proposition

A set of evaluating metrics:

- Realism : could the data actually exist?
- Diversity : do we generate the diversity of behavior from the training set?
- Novelty : can the generator create data absent from the training set?

Compliance : do the generated data comply with the technical specifications? We do not consider privacy yet

Experimental protocol

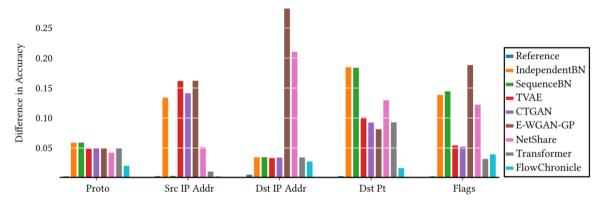
Training data

We use the CIDDS 001 dataset: train on one week of traffic and generate one week of traffic

Baselines

We compare FlowChronicle with:

- Bayesian networks
- VAE
- GAN
- Transformers
- "Reference": actual data from the same dataset to simulate the best generative method



FlowChronicle: generation quality

	Density	CMD	PCD	EMD	JSD	Coverage	DKC	MD	Rank
	Real.	Real.	Real.	Real./Div.	Real./Div.	Div.	Сотр.	Nov.	Average
	↑	\downarrow	\downarrow	\downarrow	\downarrow	↑	\downarrow	=	Ranking
Reference	0.69	0.06	1.38	0.00	0.15	0.59	0.00	6.71	-
IndependentBN	0.24	0.22	2.74	0.11	0.27	0.38	0.05	5.47	5.25
SequenceBN	0.30	0.13	2.18	0.08	0.21	0.44	0.02	5.51	3.875
TVAE	0.49	0.18	1.84	0.01	0.30	0.33	0.07	5.17	4.125
CTGAN	0.56	0.15	1.60	0.01	0.15	0.51	0.11	5.70	3.0
E-WGAN-GP	0.02	0.34	3.63	0.02	0.38	0.02	0.07	4.66	7.0
NetShare	0.32	0.28	1.47	0.03	0.36	0.22	0.05	3.82	5.25
Transformer	0.62	0.78	3.62	0.00	0.55	0.03	0.05	3.75	5.375
FlowChronicle	0.41	0.03	2.06	0.02	0.10	0.59	0.02	5.87	2.125

FlowChronicle: temporal generation quality

Overall, FlowChronicle outperforms other GenAl techniques and is explainable

Conclusion

Al for Cybersecurity: Three Applications for Network Security

$\mathsf{AI} + \mathsf{Cybersecurity} = \heartsuit$

- There are many applications of AI to cybersecurity
- I presented three of them:
 - Network intrusion detection
 - Explainable AI for anomaly detection
 - Synthetic network traffic generation

Current limits of AI

- Al is not a silver bullet for cybersecurity (yet)
- Al-based IDS still raise too many false positives
- Lack of explainability is a big drawback
- Generation performances are not that great

But AI's progress is fast and some of these limits could soon disappear