Can generative AI help us better assess security solutions?

Pierre-François Gimenez

Séminaire prospectives Inria October 15th, 2024

The issue of data in security

Why do we need data?

- For evaluating security measures, most notably detection
- For using machine learning in cybersecurity

Current state of datasets

- Public datasets are typically run in testbed with no real users
- They can suffer from mislabelling, network and attack configurations errors, etc.
- We cannot access private data due to confidentiality and privacy reasons
- \Rightarrow we cannot confidently evaluate anomaly-based detection because of the dubious quality and the lack of realistic users

My research project: use Al to generate data

FosR: Forger of security Recordings

Goals

- Generation of network (pcap files) and system data (logs)
- Consistency temporally and between network and system
- In-depth data quality evaluation
- Minimal expert's input
- Explainable models

Current work: pipeline prototype

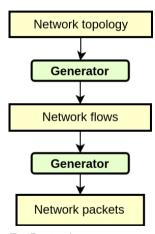
We focus on benign network data

SecGen Associated Team

SecGen

- A collaboration with researchers from CISPA specialized in data mining
- Goal: complete a network generation pipeline
- Intermediary step: network flows

Two joint works



FosR pipeline prototype

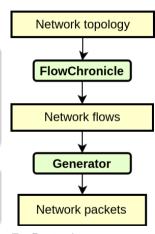
SecGen Associated Team

SecGen

- A collaboration with researchers from CISPA specialized in data mining
- Goal: complete a network generation pipeline
- Intermediary step: network flows

Two joint works

FlowChronicle: a network flow generator



FosR pipeline prototype

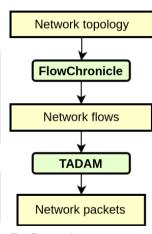
SecGen Associated Team

SecGen

- A collaboration with researchers from CISPA specialized in data mining
- Goal: complete a network generation pipeline
- Intermediary step: network flows

Two joint works

- FlowChronicle: a network flow generator
- TADAM: a timed automata learner



FosR pipeline prototype

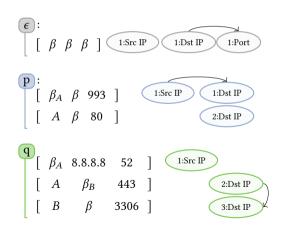
FlowChronicle

Pattern language

- Hybrid approach: pattern detection and statistical modeling
- Pattern detection: find temporal patterns of flows
 - DNS query then HTTP(S)
 - IMAP request then HTTP(S)
- The values that are not fixed are modelized with a Bayesian network
- These patterns are self-explanatory:
 - they can be verified by an expert
 - they can also be added manually
- This work has just been accepted for publication

FlowChronicle

Model — Pattern and Bayesian Network:



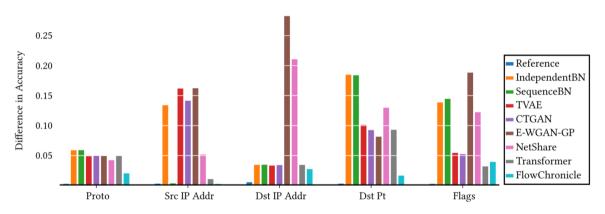
Data and Pattern Windows:

Time	Src IP	Dst IP	Port
12	134.96.235.78	142.251.36.5	993
56	134.96.235.129	8.8.8.8	52
89	134.96.235.78	212.21.165.114	80
113	134.96.235.129	198.95.26.96	443
145	198.95.26.96	198.95.28.30	3306
156	134.96.235.78	134.96.234.5	21
178	134.96.235.36	185.15.59.224	993
206	134.96.235.36	128.93.162.83	80

FlowChronicle: non-temporal generation quality

	Density	CMD	PCD	EMD	JSD	Coverage	DKC	MD	Rank
	Real.	Real.	Real.	Real./Div.	Real./Div.	Div.	Сотр.	Nov.	Average
	↑	\downarrow	↓	↓	↓ ↓	1	\downarrow	=	Ranking
Reference	(0.69)	(0.06)	(1.38)	(0.00)	(0.15)	(0.59)	(0.00)	(6.71)	-
IndependentBN	7 (0.24)	5 (0.22)	6 (2.74)	8 (0.11)	4 (0.27)	4 (0.38)	4 (0.05)	4 (5.47)	5.25
SequenceBN	6 (0.30)	2(0.13)	5 (2.18)	7 (0.08)	3(0.21)	3 (0.44)	2(0.02)	3 (5.51)	3.875
TVAE	3 (0.49)	4(0.18)	3 (1.84)	2 (0.01)	5 (0.30)	5 (0.33)	6 (0.07)	5 (5.17)	4.125
CTGAN	2 (0.56)	3(0.15)	2(1.60)	3 (0.01)	2(0.15)	2 (0.51)	8 (0.11)	2 (5.70)	3.0
E-WGAN-GP	8 (0.02)	7(0.34)	8 (3.63)	5 (0.02)	7 (0.38)	8 (0.02)	7 (0.07)	6 (4.66)	7.0
NetShare	5 (0.32)	6(0.28)	1 (1.47)	6 (0.03)	6(0.36)	6 (0.22)	5 (0.05)	7 (3.82)	5.25
Transformer	1 (0.62)	8 (0.78)	7 (3.62)	1 (0.00)	8 (0.55)	7 (0.03)	3 (0.05)	8 (3.75)	5.375
FlowChronicle	4 (0.41)	1 (0.03)	4 (2.06)	4 (0.02)	1 (0.10)	1 (0.59)	1 (0.02)	1 (5.87)	2.125

FlowChronicle: temporal generation quality



Learning

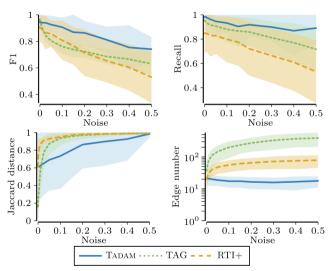
- Existing automata learners from observations cannot handle noisy data
- We propose TADAM: a robust timed automata learner
- Two main contributions:
 - A compression-based score to avoid overfitting
 - An explicit modelization of the noise

Experimental results

Our method:

- is far more robust to noise
- learns smaller models
- has better performance on real-world classification and anomaly detection tasks

TADAM: experiments



Learner	AU-ROC	\mathbf{TPR}	\mathbf{FPR}	$\mathbf{F1}$
Tadam	0.982	0.998	0.025	0.705
TAG	0.891	1	0.142	0.298
RTI+	0.790	1	0.292	0.171
$_{\mathrm{HMM}}$	0.608	0.640	0.085	0.288

Table 3: Anomaly detection performance on HDFS_v1 dataset. We report the TPR, FPR and F1-score for the threshold maximizing TPR-FPR.

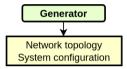
What about packet generation?

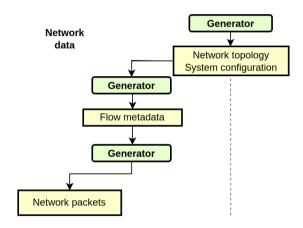
Generation from automata

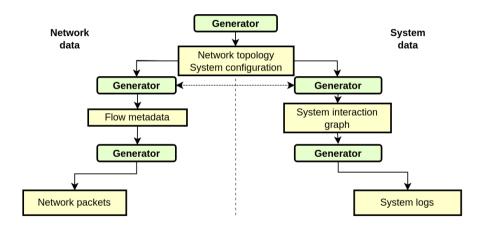
- With a probabilistic automata, we can sample packet headers sequences
- But generation must be parameterized according to FlowChronicle's output!
- For example: total size = 5200 bytes, 5 forward packets, 8 backward packets
- This can be done easily by representing the constraints by an automaton and computing the intersection between the protocol automaton and the constraints automaton
- Such conditioning is much more difficult with deep learning models

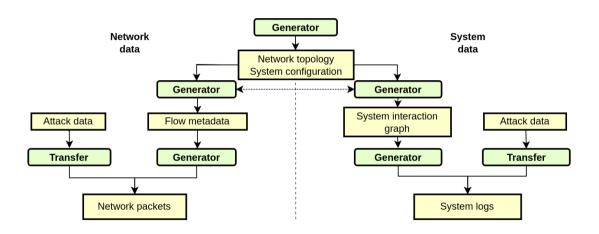
From headers sequence to packets

- Most data can be filled automatically (ACK number, checksum, etc.)
- Payloads are either random or replayed, but LLMs could be a great tool to generate realistic payloads
- Evaluation of generated pcap via analysis tools (Wireshark, Zeek, Suricata, etc.)









Conclusion

The need of data

- Good quality data is of utmost importance for security system evaluation
- One way to achieve such quality is through generative AI

Current and future work

- We found out that "classical" Al can yield better quality generation for low-dimension feature spaces, on top of being explainable
- We are finishing a first pipeline of generation (from network capture to network capture)
- We plan to integrate FosR to PIRAT's honeynet platform
- More collaborations are starting