

# **Conditionally Acyclic CO-Networks for Efficient Preferential Optimization**

Pierre-François Gimenez<sup>1</sup> Jérôme Mengin  $^2$ 

Contact: pierre-francois.gimenez@centralesupelec.fr

<sup>1</sup> CentraleSupélec, Univ. Rennes, IRISA, France <sup>2</sup> IRIT, Université Paul Sabatier, CNRS, France



#### **Preferences representation**

## State of the art

- Recommendations are ubiquitous: VOD streaming services, product configurators, e-commerce platforms... They help the user to navigate the space of items
- ► We focus on products described by vectors, such as kitchens, computers, cars, or vacations
- Classical recommendation algorithms cannot be applied because the number of

Two main ordinal model families have been proposed to model preferences in combinatorial domains, acyclic CP-nets and LP-trees:



bought/chosen items is negligible regarding the number of possible combinations

- ► A classical query is the **preferential optimization** of a partially defined object u: what is opt(u) the preferred extension of u?
- Figure: A CP-net However:

- LP-trees are not very succinct and the relative importance of attributes is not useful for preferential optimization
- acyclic CP-nets are not as expressive as LP-trees for optimization
- unsupervised preferences learning approach cannot be extended to CP-nets since they encode partial orders

# **Conditionally acyclic CO-nets**

# **Optimization as decompression**



Figure: A CO-net

- Conditionally acyclic CO-nets are:
- A variant of CP-nets suited for optimization
- As expressive as LP-trees for optimization
- Even more succinct than CP-nets (especially with high-dimension variables) Fast preferential optimization with

- The preferential optimization task transforms a partially defined vector into a fully defined vector
- ► We propose to introduce the inverse function to compress vectors: code(o) is the smallest vector such that opt(code(o)) = o
- Functions opt (for decompression) and code (for compression) can be computed quickly with variants of the Forward Sweep algorithm
- $\triangleright$  CO-nets could be learned by minimising the description length of D:  $L(D) = \min_{H \in \mathcal{H}} \left( L(H) + L(D|H) \right)$ , where the size of a model HIS:

$$L(H) = L_{\mathbb{N}}(|\mathcal{X}|) + \sum_{N \in \mathcal{X}} \left( L_{\mathbb{N}}(|Pa(N)|) + \log_2 \left( \frac{|\mathcal{X}| - 1}{|Pa(N)|} \right) + |Pa(N)| \log_2 |N| \right)$$
  
and the size of the data  $D$  given a model  $H$  is:

$$L(D \mid H) = \sum \left( L_{\mathbb{N}}(|code(o, H)|) + \log_2 \left( \frac{|\mathcal{X}|}{|\mathcal{X}|} \right) + \sum \log_2 \left( |X| - 1 \right) \right)$$

# extended Forward Sweep algorithm

#### $\sum_{o \in D} \left( L_{\mathbb{N}}(|code(o,H)|) + \log_2 \left( |code(o,H)| \right) \right)$ $\sum_{x \in code(o,H)}$ $L(D \mid II)$ $\log_2(|\mathbf{A}| -$ - エノ |

## Experiment

#### Conclusion

- Evaluation of the compression rates of 3 sales histories of cars from Renault
- Datasets are in CSV format and weigh a few MB
- Data and code available at https://github.com/ PFGimenez/co-net-ecai23

| Dataset                                            | LZMA   | PPMd   | bzip2  | DEFLATE | CO-net |
|----------------------------------------------------|--------|--------|--------|---------|--------|
| Small                                              | 95.80% | 97.90% | 97.46% | 94.50%  | 97.03% |
| Medium                                             | 96.04% | 97.98% | 97.71% | 94.82%  | 97.12% |
| Big                                                | 96.40% | 97.93% | 97.64% | 94.90%  | 97.67% |
| Table: Space savings on the three Renault datasets |        |        |        |         |        |

- Performances of CO-nets are similar to specialized compression algorithms CO-nets can effectively represent real-world preferences!
- CO-nets are models tailored for preferential optimization
- Experimental assessment of their representation of real-world preferences is promising
- ► This article paves the way toward unsupervised learning of CO-nets from sales histories with MDL