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Opening example

Question time
Complete the following sentence:

Paris is to what London is to .

First kind of answer
• France and England
• Leads to: "Paris is to France what London is to England."
• Proposed by those who understand the intent behind the question

Second kind of answer
• o crowded for you, and that’s and me
• Leads to: "Paris is too crowded for you, and that’s what London is to me."
• Proposed by those who know about injection attacks
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What is an injection attack

Injection attack
An injection attack leverages a user input to modify the semantics of a sentence

Paris subway station pun

à mon Jules Joffrin baiser

"Jules Joffrin" is a proper name
The whole sentence means "I give a kiss to my boyfriend"
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And in software engineering?

SQL injection are well-known
A developer writes an authentication query:

SELECT id FROM user WHERE login=’ ’ AND password=’ ’
If the user input is admin and ’ OR 1=1-- it leads to:

SELECT id FROM user WHERE login=’admin’ AND password=’’ OR 1=1--’
Access granted, no need for the password!

Injection-based attacks are not only about SQL. . .
• Interpreted languages: bash, JavaScript, python
• Formats: JSON, XML
• Protocols: SMTP, LDAP
• Markup languages: HTML, CSS

A very common and very serious threat in cybersecurity
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What is this presentation about?

A formal approach based on languages
• Propose a definition of injection vulnerabilities
• Propose two security properties and analyze their decidability
• Highlight some vulnerable language patterns
• Propose design principles to create secure-by-design languages
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Formalization and security properties
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Running example

LDAP protocol
• LDAP is a widely used protocol for search in directory services
• It is regularly used for authentication

A simplified grammar (where s is any string):

S → (!S) S → (s=s) S → (&L)
S → (|L) L → S L → LS

Examples
• (&(uid=foo)(passwd=bar))
• (&(uid=foo)(passwd=bar)(!(status=online)))
• (|(mode=root)(&(uid=foo)(passwd=bar))
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Definitions

Query
A query is a complete command. For example: LDAP query, JSON file, a network packet, etc.

Template
• A fill-in-the-blanks template is the string written by the developer
• Example: (&(uid= )(passwd=1234))

Injection
• An injection is the string inserted in a template
• Example: "foo"
• Injections (always in red) may be legitimate or malicious
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How to modelize a malicious injection?

Intent
• We assume the developer has an intent in mind when they write the template
• The intent is modelized as a symbol or a sequence of symbol denoted ι (for example: L

or s = s)
• An injection w is legitimate if ι ⇒∗ w

Example
• Template: (&(uid= )(passwd=1234))
• Intent: s
• Legitimate injection: root, leading to (&(uid=root)(passwd=1234))
• Malicious injection: foo)(loc=bar, leading to (&(uid=foo)(loc=bar)(passwd=1234))
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Intent-equivalence

Question
In which condition does a template p s only accept legitimate injections?

Definitions
• The set of possible injections in this template : F (L,(p,s)) = {w | pws is a word of L}
• The set of injections expected by the developer : E (G , ι) = {w | ι ⇒∗ w}

A template p s is said to be intent-equivalent to ι if

S ⇒∗ pιs and F (L(G),(p,s)) = E (G , ι)

Examples for LDAP
• (!(uid=foo) is intent-equivalent to ) → this template is secure
• (&(uid= )(passwd=1234)) is not intent-equivalent to s → this template is not secure
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Intent-equivalence results

• Decidable for regular and some
deterministic grammars

• Decidable for context-free
grammars for terminal intents, but
undecidable with any intent

≥ 1 blanks
ι ∈ (∆)m

≥ 1 blanks
ι ∈ (∆+)m

≥ 1 blanks
ι ∈ (T +)m

Regular
LR(0) Decidable Decidable Decidable

LR(k) Decidable ? Decidable

Context-free Undecidable Undecidable Decidable
Is a template intent-equivalent to ι?

⇒ most templates can be checked for injection vulnerability by static analysis
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Intent-security

Question
In which condition a grammar can only generate intent-equivalent templates?

Definitions
• The set of injection of a whole grammar for a particular intent :

I(G , ι) =
⋃

{(p,s)|S⇒∗pιs} F (L(G),(p,s))
• The set of unexpected injections (i.e., the set of injections that may appear in a template

and that is not explained by the intent): δI(G , ι) = I(G , ι)−E (G , ι)

Intent-security
A grammar is intent-secure for the intent ι if δI(G , ι) = ∅.

These definitions can be extended to multiples blanks as well.
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Intent-security

• No infinite regular language (and
languages that include infinite regular
sublanguages) have an intent-secure
grammar

• For two blanks, no context-free language
have an intent-secure grammar

• It is undecidable for one blank for
deterministic grammars

One blank ≥ 2 blanks

Finite, |L| ≥ 2 Decidable Decidable

Grammars with infinite
regular sublanguage False False

Infinite LR(0)
or context-free Undecidable False

Is a grammar intent-secure?

⇒ verifying whether a grammar is intent-secure is difficult, and most are vulnerable!
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Focus on infinite regular languages

No infinite regular language has an intent-secure grammar

Intuition behind the impossibility
• The only way to have an infinite regular expression is to have a repetition with *. For

example, in SQL: SELECT (<Attribute> ,)* <Attribute> FROM <Table> is an infinite
regular expression.

• In the template SELECT FROM <Table>, one can inject <Attribute>,
<Attribute> even if the intent is <Attribute>

• It is closely related to the pumping lemma
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Focus on infinite regular languages

Infinite regular patterns are ubiquitous!
• SQL: (<Condition> OR)* <Condition>
• SQL: (<Query> ;)* <Query>
• OS command: (<Command> ;)* <Command>
• OS parameters: (--<Parameter> )*
• SMTP: (<Email> %0A cc:)* <Email>
• JSON: (<Var> = <Value> ,)* <Var> = <Value>
• LDAP: (&((s = s))*)

→ Many injection attacks rely on this vulnerability
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Focus on infinite context-free languages

For two blanks, no infinite context-free language has an intent-secure grammar

Intuition behind the impossiblity
• Based on the pumping lemma: by modifying the query in two positions, one can shift

down part of the parse tree
• Consider the LDAP query: (&(uid= )(passwd= ))
• Legitimate injection: (&(uid=foo)(passwd=bar))
• Malicious injection: (&(uid=admin)(!(&(1=0)(passwd=text))))
• This LDAP attack is an actual injection used by attackers to bypass authentication
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Example with an LDAP attack

S

( & L

L

S

( uid = foo )

S

( passwd = bar )

)

Legitimate injection
(&(uid=foo)(passwd=bar))

S

( & L

L

S

( uid = admin )

S

( ! S

( & L

L

S

( 1 = 0 )

S

( passwd = text )

)

)

)

Malicious injection
(&(uid=admin)(!(&(1=0)(passwd=text))))

⇒ The blue subtree has been moved by the attack
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Secure-by-design languages
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Secure-by-design languages

Proving is difficult
• It is undecidable to prove that a deterministic grammar is intent-secure
• How to create languages that are secure by design?
• We only focus on intent-security for one blank (all deterministic languages are vulnerable

with two blanks)
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Base theorem

LLRR Theorem
Let G = (T ,N,R,S) a context-free formal grammar. Let denote GA the grammar (T ,N,R,A)
where A ∈ N and L(G) the language described by a grammar G . Denote RA the set of rules
whose left-hand side is A. If

• G is LL(1)
• G is RR(1)
• G is epsilon-free, i.e. there are no rules of the form A → ϵ

• L(GA) is bifix-free (prefix-free and suffix-free) for all A ∈ N
• For all A ∈ N, if there exists B ∈ ∆ and α ∈ ∆∗ such that A → B and A → α, then α = B

Then G is intent-secure.
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Secure design pattern

"Open-close" pattern
Informally: if every rule starts and ends with a unique terminal, then the grammar is
intent-secure

Let us consider a list written as e1,e2,e3, . . .en. Its grammar is:

L → e,L L → e

This is a regular language, so it is vulnerable. Example:

e1, ,e2

can be injected with e or e,e′
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Example

We can modify the grammar by adding unique tags at the start and the end of each rule:

L → [e,L] L → <e>

Try to inject something that is not just an element:

< >

[1, [2, [ , <4>]]]

The only possible injections are elements!

With a low cost, we can remove vulnerability against injections using one blank
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Secure design pattern

"Open" pattern
Informally: if we assume that injection cannot target tags (because the user are typically not
supposed to enter delimiters), then it is enough to have a unique opening tag.

We can apply a similar approach to secure LDAP (added tags in blue):

S → (!S) S → {s=s} S → (&L)
S → (|L) L → <S> L → [LS]

Earlier, we attacked the following template:

(&(uid=foo)(passwd= ))

It can be rewritten into:

(&[<{uid=foo}>{passwd= }])

Towards programming secure languages by design Secure-by-design languages LangSec workshop, May 15th, 2025 23 / 25



Secure design pattern

"Open" pattern
Informally: if we assume that injection cannot target tags (because the user are typically not
supposed to enter delimiters), then it is enough to have a unique opening tag.

We can apply a similar approach to secure LDAP (added tags in blue):

S → (!S) S → {s=s} S → (&L)
S → (|L) L → <S> L → [LS]

Earlier, we attacked the following template:

(&(uid=foo)(passwd= ))

It can be rewritten into:

(&[<{uid=foo}>{passwd= }])

Towards programming secure languages by design Secure-by-design languages LangSec workshop, May 15th, 2025 23 / 25



Secure design pattern

"Open" pattern
Informally: if we assume that injection cannot target tags (because the user are typically not
supposed to enter delimiters), then it is enough to have a unique opening tag.

We can apply a similar approach to secure LDAP (added tags in blue):

S → (!S) S → {s=s} S → (&L)
S → (|L) L → <S> L → [LS]

Earlier, we attacked the following template:

(&(uid=foo)(passwd= ))

It can be rewritten into:

(&[<{uid=foo}>{passwd= }])

Towards programming secure languages by design Secure-by-design languages LangSec workshop, May 15th, 2025 23 / 25



Secure design pattern

"Open" pattern
Informally: if we assume that injection cannot target tags (because the user are typically not
supposed to enter delimiters), then it is enough to have a unique opening tag.

We can apply a similar approach to secure LDAP (added tags in blue):

S → (!S) S → {s=s} S → (&L)
S → (|L) L → <S> L → [LS]

Earlier, we attacked the following template:

(&(uid=foo)(passwd= ))

It can be rewritten into:

(&[<{uid=foo}>{passwd= }])

Towards programming secure languages by design Secure-by-design languages LangSec workshop, May 15th, 2025 23 / 25



Conclusion and perspectives
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Conclusion and perspectives

Conclusion
• It is generally possible to statically verify the vulnerability of a template
• Regular patterns with * should be avoided if they may contain a user input
• All context-free grammars are vulnerable with two injections points
• Surprisingly, the more complex the grammar class, the more guarantees we can get
• We can create design principles for languages to make them intent-secure for one blank

Perspectives
If you are interested in applying these techniques to an actual language, contact me!
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