
Towards programming languages free of injection-based vulnerabilities
by design

Eric Alata, LAAS-CNRS
Pierre-François Gimenez, Inria

LangSec workshop, May 15th, 2025

Opening example

Question time
Complete the following sentence:

Paris is to what London is to .

First kind of answer
• France and England
• Leads to: "Paris is to France what London is to England."
• Proposed by those who understand the intent behind the question

Second kind of answer
• o crowded for you, and that’s and me
• Leads to: "Paris is too crowded for you, and that’s what London is to me."
• Proposed by those who know about injection attacks

Towards programming secure languages by design Introduction LangSec workshop, May 15th, 2025 2 / 25

Opening example

Question time
Complete the following sentence:

Paris is to what London is to .

First kind of answer
• France and England
• Leads to: "Paris is to France what London is to England."
• Proposed by those who understand the intent behind the question

Second kind of answer
• o crowded for you, and that’s and me
• Leads to: "Paris is too crowded for you, and that’s what London is to me."
• Proposed by those who know about injection attacks

Towards programming secure languages by design Introduction LangSec workshop, May 15th, 2025 2 / 25

Opening example

Question time
Complete the following sentence:

Paris is to what London is to .

First kind of answer
• France and England
• Leads to: "Paris is to France what London is to England."
• Proposed by those who understand the intent behind the question

Second kind of answer
• o crowded for you, and that’s and me
• Leads to: "Paris is too crowded for you, and that’s what London is to me."
• Proposed by those who know about injection attacks

Towards programming secure languages by design Introduction LangSec workshop, May 15th, 2025 2 / 25

What is an injection attack

Injection attack
An injection attack leverages a user input to modify the semantics of a sentence

Paris subway station pun

à mon Jules Joffrin baiser

"Jules Joffrin" is a proper name
The whole sentence means "I give a kiss to my boyfriend"

Towards programming secure languages by design Introduction LangSec workshop, May 15th, 2025 3 / 25

What is an injection attack

Injection attack
An injection attack leverages a user input to modify the semantics of a sentence

Paris subway station pun

à mon Jules Joffrin baiser

"Jules Joffrin" is a proper name
The whole sentence means "I give a kiss to my boyfriend"

Towards programming secure languages by design Introduction LangSec workshop, May 15th, 2025 3 / 25

And in software engineering?

SQL injection are well-known
A developer writes an authentication query:

SELECT id FROM user WHERE login=’ ’ AND password=’ ’
If the user input is admin and ’ OR 1=1-- it leads to:

SELECT id FROM user WHERE login=’admin’ AND password=’’ OR 1=1--’
Access granted, no need for the password!

Injection-based attacks are not only about SQL. . .
• Interpreted languages: bash, JavaScript, python
• Formats: JSON, XML
• Protocols: SMTP, LDAP
• Markup languages: HTML, CSS

A very common and very serious threat in cybersecurity

Towards programming secure languages by design Introduction LangSec workshop, May 15th, 2025 4 / 25

And in software engineering?

SQL injection are well-known
A developer writes an authentication query:

SELECT id FROM user WHERE login=’ ’ AND password=’ ’
If the user input is admin and ’ OR 1=1-- it leads to:

SELECT id FROM user WHERE login=’admin’ AND password=’’ OR 1=1--’
Access granted, no need for the password!

Injection-based attacks are not only about SQL. . .
• Interpreted languages: bash, JavaScript, python
• Formats: JSON, XML
• Protocols: SMTP, LDAP
• Markup languages: HTML, CSS

A very common and very serious threat in cybersecurity
Towards programming secure languages by design Introduction LangSec workshop, May 15th, 2025 4 / 25

What is this presentation about?

A formal approach based on languages
• Propose a definition of injection vulnerabilities
• Propose two security properties and analyze their decidability
• Highlight some vulnerable language patterns
• Propose design principles to create secure-by-design languages

Towards programming secure languages by design Introduction LangSec workshop, May 15th, 2025 5 / 25

Formalization and security properties

Towards programming secure languages by design Formalization and security properties LangSec workshop, May 15th, 2025 6 / 25

Running example

LDAP protocol
• LDAP is a widely used protocol for search in directory services
• It is regularly used for authentication

A simplified grammar (where s is any string):

S → (!S) S → (s=s) S → (&L)
S → (|L) L → S L → LS

Examples
• (&(uid=foo)(passwd=bar))
• (&(uid=foo)(passwd=bar)(!(status=online)))
• (|(mode=root)(&(uid=foo)(passwd=bar))

Towards programming secure languages by design Formalization and security properties LangSec workshop, May 15th, 2025 7 / 25

Definitions

Query
A query is a complete command. For example: LDAP query, JSON file, a network packet, etc.

Template
• A fill-in-the-blanks template is the string written by the developer
• Example: (&(uid=)(passwd=1234))

Injection
• An injection is the string inserted in a template
• Example: "foo"
• Injections (always in red) may be legitimate or malicious

Towards programming secure languages by design Formalization and security properties LangSec workshop, May 15th, 2025 8 / 25

How to modelize a malicious injection?

Intent
• We assume the developer has an intent in mind when they write the template
• The intent is modelized as a symbol or a sequence of symbol denoted ι (for example: L

or s = s)
• An injection w is legitimate if ι ⇒∗ w

Example
• Template: (&(uid=)(passwd=1234))
• Intent: s
• Legitimate injection: root, leading to (&(uid=root)(passwd=1234))
• Malicious injection: foo)(loc=bar, leading to (&(uid=foo)(loc=bar)(passwd=1234))

Towards programming secure languages by design Formalization and security properties LangSec workshop, May 15th, 2025 9 / 25

Intent-equivalence

Question
In which condition does a template p s only accept legitimate injections?

Definitions
• The set of possible injections in this template : F (L,(p,s)) = {w | pws is a word of L}
• The set of injections expected by the developer : E (G , ι) = {w | ι ⇒∗ w}

A template p s is said to be intent-equivalent to ι if

S ⇒∗ pιs and F (L(G),(p,s)) = E (G , ι)

Examples for LDAP
• (!(uid=foo) is intent-equivalent to) → this template is secure
• (&(uid=)(passwd=1234)) is not intent-equivalent to s → this template is not secure

Towards programming secure languages by design Formalization and security properties LangSec workshop, May 15th, 2025 10 / 25

Intent-equivalence results

• Decidable for regular and some
deterministic grammars

• Decidable for context-free
grammars for terminal intents, but
undecidable with any intent

≥ 1 blanks
ι ∈ (∆)m

≥ 1 blanks
ι ∈ (∆+)m

≥ 1 blanks
ι ∈ (T +)m

Regular
LR(0) Decidable Decidable Decidable

LR(k) Decidable ? Decidable

Context-free Undecidable Undecidable Decidable
Is a template intent-equivalent to ι?

⇒ most templates can be checked for injection vulnerability by static analysis

Towards programming secure languages by design Formalization and security properties LangSec workshop, May 15th, 2025 11 / 25

Intent-security

Question
In which condition a grammar can only generate intent-equivalent templates?

Definitions
• The set of injection of a whole grammar for a particular intent :

I(G , ι) =
⋃

{(p,s)|S⇒∗pιs} F (L(G),(p,s))
• The set of unexpected injections (i.e., the set of injections that may appear in a template

and that is not explained by the intent): δI(G , ι) = I(G , ι)−E (G , ι)

Intent-security
A grammar is intent-secure for the intent ι if δI(G , ι) = ∅.

These definitions can be extended to multiples blanks as well.

Towards programming secure languages by design Formalization and security properties LangSec workshop, May 15th, 2025 12 / 25

Intent-security

• No infinite regular language (and
languages that include infinite regular
sublanguages) have an intent-secure
grammar

• For two blanks, no context-free language
have an intent-secure grammar

• It is undecidable for one blank for
deterministic grammars

One blank ≥ 2 blanks

Finite, |L| ≥ 2 Decidable Decidable

Grammars with infinite
regular sublanguage False False

Infinite LR(0)
or context-free Undecidable False

Is a grammar intent-secure?

⇒ verifying whether a grammar is intent-secure is difficult, and most are vulnerable!

Towards programming secure languages by design Formalization and security properties LangSec workshop, May 15th, 2025 13 / 25

Focus on infinite regular languages

No infinite regular language has an intent-secure grammar

Intuition behind the impossibility
• The only way to have an infinite regular expression is to have a repetition with *. For

example, in SQL: SELECT (<Attribute> ,)* <Attribute> FROM <Table> is an infinite
regular expression.

• In the template SELECT FROM <Table>, one can inject <Attribute>,
<Attribute> even if the intent is <Attribute>

• It is closely related to the pumping lemma

Towards programming secure languages by design Formalization and security properties LangSec workshop, May 15th, 2025 14 / 25

Focus on infinite regular languages

Infinite regular patterns are ubiquitous!
• SQL: (<Condition> OR)* <Condition>
• SQL: (<Query> ;)* <Query>
• OS command: (<Command> ;)* <Command>
• OS parameters: (--<Parameter>)*
• SMTP: (<Email> %0A cc:)* <Email>
• JSON: (<Var> = <Value> ,)* <Var> = <Value>
• LDAP: (&((s = s))*)

→ Many injection attacks rely on this vulnerability

Towards programming secure languages by design Formalization and security properties LangSec workshop, May 15th, 2025 15 / 25

Focus on infinite context-free languages

For two blanks, no infinite context-free language has an intent-secure grammar

Intuition behind the impossiblity
• Based on the pumping lemma: by modifying the query in two positions, one can shift

down part of the parse tree
• Consider the LDAP query: (&(uid=)(passwd=))
• Legitimate injection: (&(uid=foo)(passwd=bar))
• Malicious injection: (&(uid=admin)(!(&(1=0)(passwd=text))))
• This LDAP attack is an actual injection used by attackers to bypass authentication

Towards programming secure languages by design Formalization and security properties LangSec workshop, May 15th, 2025 16 / 25

Example with an LDAP attack

S

(& L

L

S

(uid = foo)

S

(passwd = bar)

)

Legitimate injection
(&(uid=foo)(passwd=bar))

S

(& L

L

S

(uid = admin)

S

(! S

(& L

L

S

(1 = 0)

S

(passwd = text)

)

)

)

Malicious injection
(&(uid=admin)(!(&(1=0)(passwd=text))))

⇒ The blue subtree has been moved by the attack

Towards programming secure languages by design Formalization and security properties LangSec workshop, May 15th, 2025 17 / 25

Example with an LDAP attack

S

(& L

L

S

(uid = foo)

S

(passwd = bar)

)

Legitimate injection
(&(uid=foo)(passwd=bar))

S

(& L

L

S

(uid = admin)

S

(! S

(& L

L

S

(1 = 0)

S

(passwd = text)

)

)

)

Malicious injection
(&(uid=admin)(!(&(1=0)(passwd=text))))

⇒ The blue subtree has been moved by the attack

Towards programming secure languages by design Formalization and security properties LangSec workshop, May 15th, 2025 17 / 25

Example with an LDAP attack

S

(& L

L

S

(uid = foo)

S

(passwd = bar)

)

Legitimate injection
(&(uid=foo)(passwd=bar))

S

(& L

L

S

(uid = admin)

S

(! S

(& L

L

S

(1 = 0)

S

(passwd = text)

)

)

)

Malicious injection
(&(uid=admin)(!(&(1=0)(passwd=text))))

⇒ The blue subtree has been moved by the attack
Towards programming secure languages by design Formalization and security properties LangSec workshop, May 15th, 2025 17 / 25

Secure-by-design languages

Towards programming secure languages by design Secure-by-design languages LangSec workshop, May 15th, 2025 18 / 25

Secure-by-design languages

Proving is difficult
• It is undecidable to prove that a deterministic grammar is intent-secure
• How to create languages that are secure by design?
• We only focus on intent-security for one blank (all deterministic languages are vulnerable

with two blanks)

Towards programming secure languages by design Secure-by-design languages LangSec workshop, May 15th, 2025 19 / 25

Base theorem

LLRR Theorem
Let G = (T ,N,R,S) a context-free formal grammar. Let denote GA the grammar (T ,N,R,A)
where A ∈ N and L(G) the language described by a grammar G . Denote RA the set of rules
whose left-hand side is A. If

• G is LL(1)
• G is RR(1)
• G is epsilon-free, i.e. there are no rules of the form A → ϵ

• L(GA) is bifix-free (prefix-free and suffix-free) for all A ∈ N
• For all A ∈ N, if there exists B ∈ ∆ and α ∈ ∆∗ such that A → B and A → α, then α = B

Then G is intent-secure.

Towards programming secure languages by design Secure-by-design languages LangSec workshop, May 15th, 2025 20 / 25

Secure design pattern

"Open-close" pattern
Informally: if every rule starts and ends with a unique terminal, then the grammar is
intent-secure

Let us consider a list written as e1,e2,e3, . . .en. Its grammar is:

L → e,L L → e

This is a regular language, so it is vulnerable. Example:

e1, ,e2

can be injected with e or e,e′

Towards programming secure languages by design Secure-by-design languages LangSec workshop, May 15th, 2025 21 / 25

Secure design pattern

"Open-close" pattern
Informally: if every rule starts and ends with a unique terminal, then the grammar is
intent-secure

Let us consider a list written as e1,e2,e3, . . .en. Its grammar is:

L → e,L L → e

This is a regular language, so it is vulnerable. Example:

e1, ,e2

can be injected with e or e,e′

Towards programming secure languages by design Secure-by-design languages LangSec workshop, May 15th, 2025 21 / 25

Secure design pattern

"Open-close" pattern
Informally: if every rule starts and ends with a unique terminal, then the grammar is
intent-secure

Let us consider a list written as e1,e2,e3, . . .en. Its grammar is:

L → e,L L → e

This is a regular language, so it is vulnerable. Example:

e1, ,e2

can be injected with e or e,e′

Towards programming secure languages by design Secure-by-design languages LangSec workshop, May 15th, 2025 21 / 25

Example

We can modify the grammar by adding unique tags at the start and the end of each rule:

L → [e,L] L → <e>

Try to inject something that is not just an element:

< >

[1, [2, [, <4>]]]

The only possible injections are elements!

With a low cost, we can remove vulnerability against injections using one blank

Towards programming secure languages by design Secure-by-design languages LangSec workshop, May 15th, 2025 22 / 25

Example

We can modify the grammar by adding unique tags at the start and the end of each rule:

L → [e,L] L → <e>

Try to inject something that is not just an element:

< >

[1, [2, [, <4>]]]

The only possible injections are elements!

With a low cost, we can remove vulnerability against injections using one blank

Towards programming secure languages by design Secure-by-design languages LangSec workshop, May 15th, 2025 22 / 25

Example

We can modify the grammar by adding unique tags at the start and the end of each rule:

L → [e,L] L → <e>

Try to inject something that is not just an element:

< >

[1, [2, [, <4>]]]

The only possible injections are elements!

With a low cost, we can remove vulnerability against injections using one blank

Towards programming secure languages by design Secure-by-design languages LangSec workshop, May 15th, 2025 22 / 25

Example

We can modify the grammar by adding unique tags at the start and the end of each rule:

L → [e,L] L → <e>

Try to inject something that is not just an element:

< >

[1, [2, [, <4>]]]

The only possible injections are elements!

With a low cost, we can remove vulnerability against injections using one blank

Towards programming secure languages by design Secure-by-design languages LangSec workshop, May 15th, 2025 22 / 25

Example

We can modify the grammar by adding unique tags at the start and the end of each rule:

L → [e,L] L → <e>

Try to inject something that is not just an element:

< >

[1, [2, [, <4>]]]

The only possible injections are elements!

With a low cost, we can remove vulnerability against injections using one blank

Towards programming secure languages by design Secure-by-design languages LangSec workshop, May 15th, 2025 22 / 25

Secure design pattern

"Open" pattern
Informally: if we assume that injection cannot target tags (because the user are typically not
supposed to enter delimiters), then it is enough to have a unique opening tag.

We can apply a similar approach to secure LDAP (added tags in blue):

S → (!S) S → {s=s} S → (&L)
S → (|L) L → <S> L → [LS]

Earlier, we attacked the following template:

(&(uid=foo)(passwd=))

It can be rewritten into:

(&[<{uid=foo}>{passwd= }])

Towards programming secure languages by design Secure-by-design languages LangSec workshop, May 15th, 2025 23 / 25

Secure design pattern

"Open" pattern
Informally: if we assume that injection cannot target tags (because the user are typically not
supposed to enter delimiters), then it is enough to have a unique opening tag.

We can apply a similar approach to secure LDAP (added tags in blue):

S → (!S) S → {s=s} S → (&L)
S → (|L) L → <S> L → [LS]

Earlier, we attacked the following template:

(&(uid=foo)(passwd=))

It can be rewritten into:

(&[<{uid=foo}>{passwd= }])

Towards programming secure languages by design Secure-by-design languages LangSec workshop, May 15th, 2025 23 / 25

Secure design pattern

"Open" pattern
Informally: if we assume that injection cannot target tags (because the user are typically not
supposed to enter delimiters), then it is enough to have a unique opening tag.

We can apply a similar approach to secure LDAP (added tags in blue):

S → (!S) S → {s=s} S → (&L)
S → (|L) L → <S> L → [LS]

Earlier, we attacked the following template:

(&(uid=foo)(passwd=))

It can be rewritten into:

(&[<{uid=foo}>{passwd= }])

Towards programming secure languages by design Secure-by-design languages LangSec workshop, May 15th, 2025 23 / 25

Secure design pattern

"Open" pattern
Informally: if we assume that injection cannot target tags (because the user are typically not
supposed to enter delimiters), then it is enough to have a unique opening tag.

We can apply a similar approach to secure LDAP (added tags in blue):

S → (!S) S → {s=s} S → (&L)
S → (|L) L → <S> L → [LS]

Earlier, we attacked the following template:

(&(uid=foo)(passwd=))

It can be rewritten into:

(&[<{uid=foo}>{passwd= }])

Towards programming secure languages by design Secure-by-design languages LangSec workshop, May 15th, 2025 23 / 25

Conclusion and perspectives

Towards programming secure languages by design Conclusion and perspectives LangSec workshop, May 15th, 2025 24 / 25

Conclusion and perspectives

Conclusion
• It is generally possible to statically verify the vulnerability of a template
• Regular patterns with * should be avoided if they may contain a user input
• All context-free grammars are vulnerable with two injections points
• Surprisingly, the more complex the grammar class, the more guarantees we can get
• We can create design principles for languages to make them intent-secure for one blank

Perspectives
If you are interested in applying these techniques to an actual language, contact me!

Towards programming secure languages by design Conclusion and perspectives LangSec workshop, May 15th, 2025 25 / 25

	Introduction
	Formalization and security properties
	Secure-by-design languages
	Conclusion and perspectives

