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Context: recommendation in e-commerce

▶ Highly customizable items (e.g., cars, computers, travel,
kitchens) form a huge combinatorial space

▶ Classical recommendation algorithms are not scalable
enough to be usable

▶ To help users find the product they prefer, we need to
modelize their preference over this combinatorial space
using a preference model class

Contribution: how to learn CP-nets preferences from past sales

How do we guess what the user likely prefers?

Answer: Use Sales History D (a multiset of items sold in the past)

The higher an outcome is ranked in the user’s preference, the
greater the probability that they ends up with it.

Induce a preference model that “explains” D

Model class Recommendation
query complexity

Expressiveness Learnable
from D

Conditional Lexico-
graphic Preferences

P Low Yes

Bayesian Networks NP-hard Maximum Yes

Acyclic CP-nets P High No*

*until this article

Conditional Preference Network (CP-net)

A CP-net = a directed graph + local preference tables
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ā∨b̄ : c̄>c
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A CP-net ϕ0 Its relation order ≻ϕ0

Polynomial computation of o = opt(u,≻ϕ), the most preferred
alternative o that expands a partially defined alternative u

Minimum Description Length principle for learning
CP-nets from sales history

MDL principle: choose model ϕ that maximises compression of D:

min
ϕ

(
L(ϕ) + L(D|ϕ)

)
Lossless compression for alternative o: compress o with
code(o, ϕ) = smallest partial instantiation u s.t. opt(u,≻ϕ) = o.
Uncompress with opt.

For instance: code(ab̄c̄, ϕ0) = b̄ because ab̄c̄ is the optimal
alternative when B = b̄.

L(ϕ) = LN(n) +
∑
N∈X

LN(|Pa(N)|) + log2
(

n−1
|Pa(N)|

)
+ |Pa(N)| log2 |N |

L(D|ϕ) =
∑
o∈D

[
LN(| code(o, ϕ)|) + log2

(
n

| code(o,ϕ)|
)
+

∑
X∈code(o,ϕ)

log2(|X | − 1)
]

Complexity of CP-net learning with MDL principle

We study an approximation of L(ϕ) + L(D|ϕ), the Normalized
Mean Code Length: NMCL(ϕ) = 1

nEp[|code(·, ϕ)|]
▶ Sample complexity : For the family of CP-nets with n

nodes and whose nodes have at most k parents:

N(δ, ϵ) = O
(d 2k

ϵ2
(ln

1

δ
+ k(ln d + ln(n + 1)))

)
▶ Computational complexity : Finding the acyclic CP-net

that minimizes the empirical score over D is NP-complete

Learning algorithm

Algorithm 1: Hill climbing search for CP-net learning

Data: a dataset D, an initial CP-net ϕ′

1 score ← L(ϕ′) + L(D|ϕ′); previous score ← +∞
2 while score < previous score do
3 ϕ← ϕ′

4 neighbors ← transformations(ϕ)
5 remove non-acyclic graphs from neighbors
6 fit CPTs of neighbors from D
7 ϕ′← arg minϕ′′∈neighbors L(ϕ

′′) + L(D|ϕ′′)
8 previous score ← score
9 score ← L(ϕ′) + L(D|ϕ′)

10 return ϕ

line 4 Neighbors of current CP-net ϕ′ obtained by adding,
removing or reversing edges

line 6 For every neighbor ϕ′, attribute X , u ∈ Pa(ϕ′,X ):
>u= order of decreasing conditional frequency in D

Experiments

Protocol: recommendation task
Conclusion

▶ Lower accuracy than BN, but
much faster

▶ Clustering help with the
limited expressivity

Future works
▶ Apply this framework to other

preference model classes
▶ Investigate the connection

between BN and CP-nets


