Learning Conditional Preference Networks: an Approach Based on the Minimum Description Length Principle Pierre-François Gimenez, Jérôme Mengin CentraleSupélec, IRIT Contact: pierre-francois.gimenez@centralesupelec.fr IJCAI'24 CentraleSupélec

Context: recommendation in e-commerce

- ▶ Highly customizable items (e.g., cars, computers, travel, kitchens) form a huge combinatorial space
- ▶ Classical recommendation algorithms are not scalable enough to be usable
- \blacktriangleright To help users find the product they prefer, we need to modelize their preference over this combinatorial space using a preference model class

Answer: Use Sales History D (a multiset of items sold in the past) The higher an outcome is ranked in the user's preference, the greater the probability that they ends up with it.

Induce a preference model that "explains" D

Contribution: how to learn CP-nets preferences from past sales

min ϕ $(L(\phi) + L(D|\phi))$

Lossless compression for alternative o: compress o with code(o, ϕ) = smallest partial instantiation u s.t. opt(u, \succ, ϕ) = o. Uncompress with opt. For instance: code $(a\overline{b}\overline{c},\phi_0)=\overline{b}$ because $a\overline{b}\overline{c}$ is the optimal

How do we guess what the user likely prefers?

*until this article

alternative when $B = b$.

Conditional Preference Network (CP-net)

Minimum Description Length principle for learning CP-nets from sales history

MDL principle: choose model ϕ that maximises compression of D:

$$
L(\phi) = L_{\mathbb{N}}(n) + \sum_{N \in \mathcal{X}} L_{\mathbb{N}}(|Pa(N)|) + \log_2 \left(\frac{n-1}{|Pa(N)|} \right) + \frac{|Pa(N)| \log_2 |\underline{N}|}{\log_2 |\underline{N}|}
$$

$$
L(D|\phi) = \sum_{o \in D} [L_{\mathbb{N}}(|\text{code}(o, \phi)|) + \log_2 \left(\frac{n}{|\text{code}(o, \phi)|} \right) + \sum_{X \in \text{code}(o, \phi)} \log_2(|X| - 1)]
$$

Complexity of CP-net learning with MDL principle

We study an approximation of $L(\phi) + L(D|\phi)$, the Normalized Mean Code Length: $NMCL(\phi) = \frac{1}{n}$ n $E_p[|code(\cdot,\phi)||]$

 \triangleright Sample complexity : For the family of CP-nets with n nodes and whose nodes have at most k parents:

$$
N(\delta,\epsilon) = O\big(\frac{d^{2k}}{\epsilon^2}(\ln\frac{1}{\delta} + k(\ln d + \ln(n+1))\big)\big)
$$

Computational complexity : Finding the acyclic CP-net that minimizes the empirical score over D is NP-complete

Learning algorithm

Algorithm 1: Hill climbing search for CP-net learning

Data: a dataset D , an initial CP-net ϕ' 1 score \leftarrow $L(\phi') + L(D|\phi')$; previous score $\leftarrow +\infty$ 2 while score \langle previous score do 3 $\phi \leftarrow \phi'$ $\vert 4 \vert$ neighbors \leftarrow transformations (ϕ) 5 remove non-acyclic graphs from neighbors 6 fit CPTs of neighbors from D $7\mid\phi' \leftarrow \mathsf{arg\,min}_{\phi'' \in \mathsf{neighbors}} \, \mathcal{L}(\phi'') + \mathcal{L}(D|\phi'')$ ⁸ previous score ← score $\mathsf{g} \, \bigr| \, \mathsf{score} \leftarrow \mathsf{L}(\phi') + \mathsf{L}(\mathsf{D}|\phi')$ 10 return ϕ

line [4](#page-0-0) Neighbors of current CP-net ϕ' obtained by adding, removing or reversing edges line [6](#page-0-1) For every neighbor ϕ' , attribute X, $u \in \text{Pa}(\phi', X)$: $>$ _u= order of decreasing conditional frequency in D

Experiments

