Learning Conditional Preference Networks: an Approach Based on the Minimum Description Length Principle Pierre-François Gimenez, Jérôme Mengin CentraleSupélec, IRIT Contact: pierre-francois.gimenez@centralesupelec.fr IJCAI'24 CentraleSupélec

Context: recommendation in e-commerce

- Highly customizable items (e.g., cars, computers, travel, kitchens) form a huge combinatorial space
- Classical recommendation algorithms are not scalable enough to be usable
- To help users find the product they prefer, we need to modelize their preference over this combinatorial space using a preference model class

Contribution: how to learn CP-nets preferences from past sales

Minimum Description Length principle for learning CP-nets from sales history

MDL principle: choose model ϕ that maximises compression of D:

 $\min_{\phi} \left(L(\phi) + L(D|\phi) \right)$

Lossless compression for alternative o: compress o with $code(o, \phi) = smallest partial instantiation u s.t. <math>opt(u, \succ_{\phi}) = o$. Uncompress with opt. For instance: code($a\overline{b}\overline{c}, \phi_0$) = \overline{b} because $a\overline{b}\overline{c}$ is the optimal

How do we guess what the user *likely* prefers?

<u>Answer:</u> Use *Sales History D* (a multiset of items sold in the past) The higher an outcome is ranked in the user's preference, the greater the probability that they ends up with it.

Induce a preference model that "explains" D

Model class	Recommendation query complexity	Expressiveness	Learnable from <i>D</i>
Conditional Lexico- graphic Preferences	Ρ	Low	Yes
Bayesian Networks	NP-hard	Maximum	Yes
Acyclic CP-nets	Ρ	High	No*

*until this article

alternative when B = b.

$$L(\phi) = L_{\mathbb{N}}(n) + \sum_{N \in \mathcal{X}} L_{\mathbb{N}}(|Pa(N)|) + \log_{2} \binom{n-1}{|Pa(N)|} + |\underline{Pa(N)}| \log_{2} |\underline{N}|$$
$$L(D|\phi) = \sum_{o \in D} \left[L_{\mathbb{N}}(|\operatorname{code}(o,\phi)|) + \log_{2} \binom{n}{|\operatorname{code}(o,\phi)|} + \sum_{X \in \operatorname{code}(o,\phi)} \log_{2}(|\underline{X}| - 1) \right]$$

Complexity of CP-net learning with MDL principle

We study an approximation of $L(\phi) + L(D|\phi)$, the Normalized Mean Code Length: $NMCL(\phi) = \frac{1}{p}E_p[|code(\cdot, \phi)|]$

Sample complexity : For the family of CP-nets with *n* nodes and whose nodes have at most k parents:

$$N(\delta,\epsilon) = O(\frac{d^{2k}}{\epsilon^2}(\ln\frac{1}{\delta} + k(\ln d + \ln(n+1))))$$

Computational complexity : Finding the acyclic CP-net that minimizes the empirical score over D is NP-complete

Learning algorithm

Conditional Preference Network (CP-net)

Algorithm 1: Hill climbing search for CP-net learning

Data: a dataset D, an initial CP-net ϕ' 1 score $\leftarrow L(\phi') + L(D|\phi')$; previous_score $\leftarrow +\infty$ 2 while score < previous_score do $\mathbf{3} \mid \phi \leftarrow \phi'$ 4 *neighbors* \leftarrow *transformations*(ϕ) 5 remove non-acyclic graphs from *neighbors* 6 fit CPTs of *neighbors* from D 7 $\phi' \leftarrow \arg\min_{\phi'' \in neighbors} L(\phi'') + L(D|\phi'')$ 8 previous_score ← score 9 score $\leftarrow L(\phi') + L(D|\phi')$ 10 return ϕ

line 4 Neighbors of current CP-net ϕ' obtained by adding, removing or reversing edges line 6 For every neighbor ϕ' , attribute X, $u \in Pa(\phi', X)$: $>_{u}$ = order of decreasing conditional frequency in D

Experiments

