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: Context
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Context: recommendation in e-commerce
= Highly customizable items (e.g., cars, computers, travel) in large combinatorial spaces
= Classical recommendation algorithms are not scalable enough to be usable

= To help users find the product they prefer, we need to modelize their preference over this
combinatorial space using a preference model class

= To learn preferences, sales histories are generally plentiful

Model class Recom. query complexity Expressiveness  |Learnable from...
Conditional  Lexicographic||P Low Pairwise  comparisons,
Preferences sales history

Bayesian Networks NP-hard Maximum Sales history

Acyclic CP-nets P High Pairwise comparisons

=- main contribution: a learning algorithm for CP-nets from sales history
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G CP-net

CP-net
= A CP-net = a directed graph of features + local preference tables

= Each CP-net is associated with a partial order

e

abc — abc —> abc —> abc = 3bc —> abc

abt — 3bc

A CP-net with 3 variables Its associated partial order
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¢ Learning process

MDL principle: the best model is simple and explains the reality faithfully

= The best model ¢ minimizes L(¢)+ L(D|¢) where L(¢) is the size of the model and
L(D|¢) is the size of the data compressed by ¢

MDL learning of preference model
= Preference models can compute opt(u) the most preferred extension of a partial vector u
= Example: opt(b) = abc
= We introduce code(o): the smallest u such that opt(u) = o
= Example: code(abc) = b
= We use code(-) to compress and opt(+) to uncompress data

= The learning algorithm is a hill-climbing search to maximize L(¢)+ L(D|¢)
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(3% Losses

MDL loss equations:

L(6) = Lis(n) + 3 Lis(Pa(N)[) +logs (i) +|Pa(N)|log, N
Nex

L(DI6) = 3 [ Li(|code(0,0)]) + 1085 (oqilosy) + 3 logallX] 1) ]

oeD X&code(o,9)

For the theoretical analysis, we use an approximation of L(¢)+ L(D|¢), the Normalized Mean
Code Length (NMCL):

NMCL(¢) = %Ep[lcode(-,cb)ll
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& Contributions

Algorithm 1: Learning algorithm

Data: a dataset D, an initial CP-net ¢’ Sample complexity
1 score < L(¢') + L(DI|¢"); previous_score For the family of CP-nets with n nodes
< +00 ) and whose nodes have at most k parents:

2 while score < previous__score do

3 ¢ ¢ 42k 1

4 neighbors < transformations(¢) N(é,€) = O(—(In g—f—k(ln d+In(n+1))))

5 remove non-acyclic graphs from € ’
neighbors

6 fit CPTs of neighbors from D Computational complexity

7 ¢ Finding the acyclic CP-net that minimizes
arg_min¢>“€neighb0r5 L(¢")+ L(D[¢") the empirical score over D is NP-complete

8 previous_score i score (reduced from the minimum feedback arc

o | score+ L(¢')+L(D|¢") set problem)

10 return ¢ )
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¢ Experiments
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Experiments on a recommendation task
= Better accuracy than lexicographic preferences, similar speed
= Lower accuracy than Bayesian networks, but much faster

= Clustering helps with the limited expressivity
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¢ Experiments and conclusion

Conclusion
= CP-nets can now be used for many more applications GitHub
= Low query complexity: they can be used in loT

= Code is open-source (cf. QR code) E "E

Future works

= Qur experiments hint at an interesting connection between
Bayesian networks and CP-nets E

= This framework can be applied to any preference model class, | pfgimenez.fr/ijcai24
not just CP-nets!
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