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Context

Malware
A malware is a malicious software: botnet, encryption, backdoor, cryptocurrency mining. . .

Malware analysis
Two main categories of malware analysis:

• static analysis, where the software is not run
• extracted features: control flow graph, file metadata, library imports, presence of encryption,

etc.
• dynamic analysis, where the software is monitored during its execution

• extracted features: network activity, modified files, system calls list, etc.
These features can be used by machine learning to help detect, classify and cluster malware
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Windows executable file

Our work
• We focus on Windows malware, the most common desktop

target
• We study static analysis for its ease of experiment and

scaling capability

PE format
• Legacy content for backward compatibility (DOS header and

DOS stub, etc.)
• Flexible format: the order of the sections is free, some parts

are optional, etc.
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Adversarial attacks

Attacks on machine learning
• Machine learning is increasingly used to analyze malware
• Many attacks against machine learning, at different stages (data collection, learning,

inference) and targeting different properties (integrity, privacy, etc.)

Evasion attacks
• The goal of the attacker is to modify slightly the features to change the predicted class
• Formally, for an input x ∈ Rn, the attacker looks for a “small” ϵ ∈ Rn such as

argmaxc fc(x) ̸= argmaxc fc(x + ϵ) (i.e., the predicted class changed)

Question: how to make malware classifiers more robust?
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Adversarial examples against malware detectors

Certifiably robust malware detectors by design Adversarial examples against malware detectors IFIP SEC, May 23rd, 2025 5 / 24



The issue

Even very accurate classifiers can be fooled by slightly modifying the input

What about malware?
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Adversarial examples

Image ̸= malware
• We cannot randomly modify a malware and expect it to work correctly
• Images are continuous: small variations do not change their meaning
• Programs are discrete: opcode "0x60" is very different from opcode "0x61"
• Perturbations on images must stay small to be invisible to human eyes
• Perturbations on programs do not have this constraint
⇒ the threat model is very different
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Adversarial attacks on malware detection

How to attack malware detectors
Most common approach: modify the malware with semantics-preserving operations:

• file padding
• header perturbation
• API import addition
• . . . and many more

Adversarial examples are build by chaining such operations in a black-box way
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Detection evasion

Attack on images. The attacker looks for an
image within a ϵ-ball

Attack on malware. P ′ must have the same
behavior as P

Current techniques against adversarial attacks assume the perturbation is small
This assumption is not reasonable for malware!
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Certifiable robustness by design
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Certifiably robust detector by design

Related work
• Prior work: one should only use features that cannot be decreased by transformations,

along with a monotonic classifier
• Intuition: whatever the attacker does, the output of the classifier can only increase, i.e.,

the detector can only be more confident it is a malware
• If the assumption holds, then the classifier is robust: no attack is possible, no matter how

large the perturbation is
• Accuracy results are underwhelming because many features are discarded
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Intuition of our contribution

What about a more complex feature mapping?
• Earlier, the feature mapping is just a projection (keep or drop features)
• We could use adversarial examples to automatically learn the feature mapping ϕ

• That way, we could have much more expressive robust classifiers

The feature mapping ϕ ensures that perturbations can only increases features
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Expressivity

How expressive is it?
• Is this just a "hack"? Or a more profound insight into robust classifiers?
• We prove that all robust classifiers can be expressed as a features mapping

followed by a monotonic classifier

Proposition
Let ϕ be a feature mapping and f be a classifier such that f is robust against adversarial
attacks. There exist g and h such that f ◦ϕ = (f ◦h)◦ (g ◦ϕ) and f ◦h is monotonically
increasing.
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Example

Our proposition: learn the feature mapping
• Consider the attack that replaces one API call with a similar one (replacing CreateFileA

with CreateFileW)
• This transformation modifies features f1 (number of CreateFileW) and f2 (number of

CreateFileA) such as f1← f1 +1 and f2← f2−1
• The previous work would drop f2 (it can be decreased)
• If the other transformation (CreateFileW into CreateFileA) is possible, then f1 would

also be dropped!
• Our model could create the feature f3 = f1 + f2 (number of CreateFileA and

CreateFileW) and not lose as much information while still ensuring monotonicity
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How to do that?

ERDALT
• We showed that every robust classifier can be structured as a monotonic classifier on top

of some specially crafted feature mapping
• We propose to learn a neural network with two parts:

• a first layer for the role of feature mapping
• monotonic layers for the role of the detection

• We can prove, under some assumption, that this model is robust (by design)
We name our approach ERDALT: Empirically Robust by Design with Adversarial Linear
Transformation

Certifiably robust malware detectors by design Certifiable robustness by design IFIP SEC, May 23rd, 2025 15 / 24



Properties

Assumption
• Without any assumption, we cannot hope to learn robust classifiers
• To obtain theoretical guarantees, we assume the effect of the transformations on the

features is independent from the initial malware
• Replacing an API call with a similar one decreases a feature and increments another
• A padding transformation adds n bytes to a section

Linear feature mapping
• A linear feature mapping ensures that the effect of two transformations on the features is

simply the sum of their effects
• If the model is robust against all elementary transformations, then it is robust against any

combination of transformations!
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ERDALT: empirically robust by design malware detector

perturbation vectors

Linear layer

Dataset

adversarial
examplesBlack-box

attacks

Predictions

+-

Monotonically
increasing classifier Positivity constraint

ERDALT
• We want to minimise the

classification error (loss l1)
• The first linear layer maps

perturbations vectors to positive
values (loss l2)

• A third loss encourages a sparse
linear layer (loss l3)
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Experimental assessment
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Experimental protocol

Dataset and features
• Dataset: created by EURECOM and Avast, contains 60,000 malware
• Features:

• EMBER (state-of-the-art): 1871 features
• Manually selected features: 40 features selected to be difficult to decrease

Adversarial attacks
• secml-malware
• Applies semantics-preserving transformations with a genetic algorithm

Metrics
• Performances are evaluated with ROC AUC
• Robustness: proportion of malware not successfully attacked
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Performance with no protections

Model Manual features (40) EMBER (1871)

ROC AUC Robustness ROC AUC Robustness

Baseline network 89.9% 100% 91.6% 82.0%
Monotonic network 69.0% 100% 87.4% 71.5%
Random Forest 94.6% 98.5% 96.2% 81.0%
AdaBoost 85.0% 98.0% 94.2% 75.5%
k-nn 83.7% 93.5% 88.6% 0%
Decision tree 84.1% 99.5% 96.2% 67.0%
Monotonic GBT 76.2% 100% 92.7% 73.5%
GBT 92.3% 99.0% 97.5% 75.0%

• Feature sets impact a lot the AUROC and robustness
• Manually selected features lead to much higher robustness and limited ROC AUC loss
• More features means larger attack surface
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Performances with protections

Protection Model EMBER

ROC AUC Robustness

Increasing-only features Random Forest 95.2% 100%
Monotonic GBT 86.7% 100%
Gradient-boosted trees 93.8% 100%

Adversarial training Random Forest 97.6% 94.5%
Monotonic GBT 92.7% 95.5%
Gradient-boosted trees 97.6% 96.5%

ERDALT Neural network 93.0% 96.0%

ERDALT + adv. training Neural network 85.5% 100%

Adversarial training yields the best ROC AUC, but the lowest robustness
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Features selections

Increasing-only features ERDALT selection Intersection

Byte 0% 84.9% 0%
Strings 1.9% 94.2% 1.9%
General 30.0% 60.0% 30.0%
Header 77.4% 83.9% 64.5%
Section 55.2% 76.5% 40.8%
Imports 44.5% 66.5% 22.2%
Exports 100% 49.2% 49.2%
Data directories 46.7% 90.0% 43.3%

ERDALT can exploit more features than the previous method due to the linear
combinations it allows
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Ablation study

Ablation study
• A typical ML experiment to analyze the effect of each component
• We can conclude that both the linear layer and the monotonicity are necessary for high

robustness

Linear layer Monotonicity ROC AUC Robustness

× × 91.6% 82.0%
✓ × 94.3% 91.0%
× ✓ 87.4% 71.5%
✓ ✓ 93.0% 96.0%
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Conclusion

Adversarial attacks against malware detectors
• Attacks on images ̸= attacks on malware
• Provably robust methods assume the perturbation is small
• Our provably robust method does not rely on this unrealistic assumption

How to make a robust detector?
• Use a monotonic model with increasing features but expect a large performance drop
• Use ERDALT, which learns a feature mapping, and expect a smaller performance drop
• ERDALT can be combined with adversarial training as well

Perspectives
• Deep learning is not adapted to malware analysis
• We plan to apply this method to other security-related domains
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