
A theory of injection-based vulnerabilities in formal grammars

Eric Alata, LAAS-CNRS
Pierre-François Gimenez, CentraleSupelec

GT MFS, March 28th, 2023

Opening example

Question time
Complete the following sentence:

Paris is to what London is to .

First kind of answer
• France and England
• Leads to: "Paris is to France what London is to England."
• Proposed by those who understand the intent behind the question

Second kind of answer
• o crowded for you, and that’s and me
• Leads to: "Paris is too crowded for you, and that’s what London is to me."
• Proposed by those who know about injection attacks

Injections study Introduction GT MFS, March 28th, 2023 2 / 22

Opening example

Question time
Complete the following sentence:

Paris is to what London is to .

First kind of answer
• France and England
• Leads to: "Paris is to France what London is to England."
• Proposed by those who understand the intent behind the question

Second kind of answer
• o crowded for you, and that’s and me
• Leads to: "Paris is too crowded for you, and that’s what London is to me."
• Proposed by those who know about injection attacks

Injections study Introduction GT MFS, March 28th, 2023 2 / 22

Opening example

Question time
Complete the following sentence:

Paris is to what London is to .

First kind of answer
• France and England
• Leads to: "Paris is to France what London is to England."
• Proposed by those who understand the intent behind the question

Second kind of answer
• o crowded for you, and that’s and me
• Leads to: "Paris is too crowded for you, and that’s what London is to me."
• Proposed by those who know about injection attacks

Injections study Introduction GT MFS, March 28th, 2023 2 / 22

What is an injection attack

Injection attack
An injection attack leverages a user input to modify the semantics of a sentence

"The Voyage of
Doctor Dolittle is
canceled"

"À mon Jules Joffrin baiser"
"Jules Joffrin" is a Parisian subway station.
The whole sentence means "I give a kiss to

my boyfriend"

Injections study Introduction GT MFS, March 28th, 2023 3 / 22

What is an injection attack

Injection attack
An injection attack leverages a user input to modify the semantics of a sentence

"The Voyage of
Doctor Dolittle is
canceled"

"À mon Jules Joffrin baiser"
"Jules Joffrin" is a Parisian subway station.
The whole sentence means "I give a kiss to

my boyfriend"

Injections study Introduction GT MFS, March 28th, 2023 3 / 22

What is an injection attack

Injection attack
An injection attack leverages a user input to modify the semantics of a sentence

"The Voyage of
Doctor Dolittle is
canceled"

"À mon Jules Joffrin baiser"
"Jules Joffrin" is a Parisian subway station.
The whole sentence means "I give a kiss to

my boyfriend"

Injections study Introduction GT MFS, March 28th, 2023 3 / 22

And in software engineering?

SQL injection are well-known
A developer writes an authentication query:

SELECT id FROM user WHERE login=’ ’ AND password=’ ’
If the user input is admin and ’ OR 1=1-- it leads to:

SELECT id FROM user WHERE login=’admin’ AND password=’’ OR 1=1--’
Access granted, no need for the password!

Injection-based attacks concern not only SQL. . .
• Interpreted languages: bash, JavaScript, python
• Formats: JSON, XML
• Protocols: SMTP, LDAP
• Markup languages: HTML, CSS
• Even chatbots! (ChatGPT prompt injection)

Injections study Introduction GT MFS, March 28th, 2023 4 / 22

And in software engineering?

SQL injection are well-known
A developer writes an authentication query:

SELECT id FROM user WHERE login=’ ’ AND password=’ ’
If the user input is admin and ’ OR 1=1-- it leads to:

SELECT id FROM user WHERE login=’admin’ AND password=’’ OR 1=1--’
Access granted, no need for the password!

Injection-based attacks concern not only SQL. . .
• Interpreted languages: bash, JavaScript, python
• Formats: JSON, XML
• Protocols: SMTP, LDAP
• Markup languages: HTML, CSS
• Even chatbots! (ChatGPT prompt injection)

Injections study Introduction GT MFS, March 28th, 2023 4 / 22

What systems can be vulnerable?

Many systems process received instructions
• A browser receives and displays a page and executes scripts
• A database receives a query and applies it on its data
• A robot executes an order received though a network protocol

Injection vulnerabities
• These instructions may be structured using a query language, a protocol, etc.
• When instructions depend on user input, they are generally built by concatenation: it can

lead to injection vulnerabilities
• Injections are a very serious threat:

• #3 threat to web services according to OWASP
• Appears 3 times in CWE Top 25 Most Dangerous Software Errors

Injections study Introduction GT MFS, March 28th, 2023 5 / 22

What is this presentation about?

A formal approach
• Use the theory of formal language
• Propose a definition of injection vulnerabilities
• Propose two security properties and analyze their decidability
• Highlight some vulnerable language patterns

Injections study Introduction GT MFS, March 28th, 2023 6 / 22

1 Introduction

2 Background on formal language theory

3 Formalization and security properties

4 Conclusion and perspectives

Injections study Introduction GT MFS, March 28th, 2023 7 / 22

Formal language and grammar

The theory of formal languages studies the syntactic aspects of languages

Formal language
A formal language L is a set of valid strings called "words". Such string can be a SQL query, a
C program, a network packet, etc.

Formal grammar
A grammar G describes a language L(G) through a set of rewriting rules. If it is possible to
rewrite the starting symbol into a word by applying rules, then this word is in the language
described by that grammar.

Injections study Background on formal language theory GT MFS, March 28th, 2023 8 / 22

Grammar and derivation

Starting symbol: <Query>
<Query> → SELECT <SelList> FROM <FromList> WHERE <Condition>
<SelList> → <Attribute> | <Attribute> , <SelList>
<FromList> → <Table> | <Table> , <FromList>
<Condition> → <Condition> AND <Condition> | <Attribute> IN (<Query>)

| <Attribute> = <Attribute>

<Query>

SELECT <SelList>

<Attribute>

FROM <FromList>

<Table>

WHERE <Condition>

<Attribute> = <Attribute>
<Query> ⇒∗ SELECT <Attribute> FROM <Table> WHERE <Attribute> = <Attribute>

Injections study Background on formal language theory GT MFS, March 28th, 2023 9 / 22

Grammar and derivation

Starting symbol: <Query>
<Query> → SELECT <SelList> FROM <FromList> WHERE <Condition>
<SelList> → <Attribute> | <Attribute> , <SelList>
<FromList> → <Table> | <Table> , <FromList>
<Condition> → <Condition> AND <Condition> | <Attribute> IN (<Query>)

| <Attribute> = <Attribute>

<Query>

SELECT <SelList>

<Attribute>

FROM <FromList>

<Table>

WHERE <Condition>

<Attribute> = <Attribute>

<Query> ⇒∗ SELECT <Attribute> FROM <Table> WHERE <Attribute> = <Attribute>

Injections study Background on formal language theory GT MFS, March 28th, 2023 9 / 22

Grammar and derivation

Starting symbol: <Query>
<Query> → SELECT <SelList> FROM <FromList> WHERE <Condition>
<SelList> → <Attribute> | <Attribute> , <SelList>
<FromList> → <Table> | <Table> , <FromList>
<Condition> → <Condition> AND <Condition> | <Attribute> IN (<Query>)

| <Attribute> = <Attribute>

<Query>

SELECT <SelList>

<Attribute>

FROM <FromList>

<Table>

WHERE <Condition>

<Attribute> = <Attribute>
<Query> ⇒∗ SELECT <Attribute> FROM <Table> WHERE <Attribute> = <Attribute>

Injections study Background on formal language theory GT MFS, March 28th, 2023 9 / 22

Grammar and language classes

Language and grammar classes
• Languages are grouped into classes depending on their properties. Simpler languages are

easier to parse but have less expressive power.
• For each language class, there is generally a grammar class that generates it.

Informal presentation of some classical classes
• Regular language: languages that can be expressed with regular expression or finite-state

automata
• Deterministic context-free language ≈ languages that can be parsed in linear time
• Context-free language: languages recognized by pushdown automata

Regular ⊂ Deterministic ⊂ Context-free

Injections study Background on formal language theory GT MFS, March 28th, 2023 10 / 22

1 Introduction

2 Background on formal language theory

3 Formalization and security properties

4 Conclusion and perspectives

Injections study Formalization and security properties GT MFS, March 28th, 2023 11 / 22

Definitions

Query
A query is a complete command. For example: SQL query, JSON file, a network message, etc.

Template
• A fill-in-the-blanks template t is the set of strings written by the developer
• Example: "SELECT FROM DB WHERE PRICE> AND ID=22"

Injection
• An injection is the set of strings that are inserted in a template
• Example: "NUMBER" and "23.99"
• Injections (always in red) may be legitimate or malicious

Injections study Formalization and security properties GT MFS, March 28th, 2023 12 / 22

How to modelize a malicious injection?

Intent
• We assume that the developer has an intent in mind when they write the template.
• We modelize the intent with a symbol or a sequence of symbol denoted ι (for example:

<Condition> or <Comparator> <Number>)
• An injection w is legitimate if ι ⇒∗ w
• Languages and grammars don’t deal with semantics. . . but compilers/interpreters do and

rely on parsers, and parsers are based on grammars.
• It depends on the grammar and not only on the language!

Example
• Template: SELECT <Attribute> FROM <Table> WHERE <Attribute> =
• Intent: <Attribute>
• Malicious injection: <Attribute> AND <Attribute>=<Attribute>

Injections study Formalization and security properties GT MFS, March 28th, 2023 13 / 22

Intent-equivalence

Question
In which condition does a template p s only accept legitimate injections?

Definitions
• First, we define the set of possible injections in this template :

F (L,(p,s)) = {w | pws is a word of L}
• Then, we define the set of injections that are expected by the developer :

E (G , ι) = {w | ι ⇒∗ w}

Intent-equivalence
A template p s is said to be intent-equivalent to ι if

S ⇒∗ pιs and F (L(G),(p,s)) = E (G , ι)

i.e., if the intent can appear in p s and the possible injections are all expected
Injections study Formalization and security properties GT MFS, March 28th, 2023 14 / 22

Intent-equivalence results

• Intent-equivalence is decidable for
regular and some deterministic
grammars

• It is decidable for context-free
grammars for terminal
(non-derivable) intents, but
undecidable with any intent.

≥ 1 blanks
ι ∈ (∆)m

≥ 1 blanks
ι ∈ (∆+)m

≥ 1 blanks
ι ∈ (T +)m

Regular
Visibly pushdown

LR(0)
Decidable Decidable Decidable

LR(k) Decidable ? Decidable

Linear
Context-free Undecidable Undecidable Decidable

Is a template intent-equivalent to ι?

⇒ most programming languages can be checked for injection vulnerability by static analysis

Injections study Formalization and security properties GT MFS, March 28th, 2023 15 / 22

Intent-security

Question
In which condition a grammar can only generate intent-equivalent templates?

Definitions
• Let us define the set of injection of a whole grammar for a particular intent :

I(G , ι) =
⋃

{(p,s)|S⇒∗pιs} F (L(G),(p,s))
• The set of unexpected injections is the set of injections that may appear in a template

and that is not explained by the intent : δI(G , ι) = I(G , ι)−E (G , ι)

Intent-security
A grammar is intent-secure for the intent ι if δI(G , ι) = ∅.

Example
There is a grammar G such that L(G) = {ancdbn | n ≥ 0} that is intent-secure for all symbols

Injections study Formalization and security properties GT MFS, March 28th, 2023 16 / 22

Intent-security

• No infinite regular language (and
languages that include infinite regular
sublanguages) have an intent-secure
grammar

• For two blanks, no context-free language
have an intent-secure grammar

• It is undecidable for one blank for
deterministic grammars

One blank ≥ 2 blanks

Finite, |L| ≥ 2 Decidable Decidable

Grammars with infinite
regular sublanguage False False

Infinite LR(0),
linear or context-free Undecidable False

Is a grammar intent-secure?

⇒ verifying whether a grammar is intent-secure is difficult, and most are in fact vulnerable!

Injections study Formalization and security properties GT MFS, March 28th, 2023 17 / 22

Focus on infinite regular languages

No infinite regular language (and languages that include infinite regular sublanguages) have an
intent-secure grammar

Idea behind the impossibility
• The formal proof is based on the pumping lemma, but can be explained in a different way.
• The only way to have an infinite regular expression is to have a repetition with *. For

example, in SQL: SELECT (<Attribute> ,)* <Attribute> FROM <Table> is an infinite
regular expression.

• In the template SELECT FROM <Table>, one can inject <Attribute>,
<Attribute> even if the intent is <Attribute>

Implication
It explains why so many languages are vulnerable: infinite regular patterns are ubiquitous!
Another example: (Condition OR)* Condition (used in the SQL injection attacks)

Injections study Formalization and security properties GT MFS, March 28th, 2023 18 / 22

Focus on infinite context-free languages

For two blanks, no context-free language has an intent-secure grammar

Example
• Template: SELECT <Attribute> FROM <Table> WHERE IN (SELECT

<Attribute> FROM <Table>) AND <Attribute> =
• Intents: two <Attribute>
• Malicious injection:

• <Attribute> IN (SELECT <Attribute> FROM <Table> WHERE <Attribute>
• <Attribute>)

• Completed sentence: SELECT <Attribute> FROM <Table> WHERE <Attribute> IN
(SELECT <Attribute> FROM <Table> WHERE <Attribute> IN (SELECT
<Attribute> FROM <Table>) AND <Attribute> = <Attribute>)

Injections study Formalization and security properties GT MFS, March 28th, 2023 19 / 22

Focus on infinite context-free languages (cont.)

SELECT <Attribute> FROM <Table> WHERE <Attribute> IN (SELECT <Attribute>
FROM <Table> WHERE <Attribute> IN (SELECT <Attribute> FROM <Table>)
AND <Attribute> = <Attribute>)

Intuitively: with a recursive structure, one can add a level to the derivation tree by modifying
both sides of the recursive structure
Implication

• This pattern is ubiquitous as well: any kind of recursive structure with tags, parenthesis,
etc.

• This vulnerability needs blanks on both sides of the recursive structure
• Rarely seen in practice, but can happen in LDAP injection attacks

Injections study Formalization and security properties GT MFS, March 28th, 2023 20 / 22

And more complex grammars?

Context-sensitive grammar
• Our definition of unexpected injections is designed for context-free grammar, but let’s

think about context-sensitive grammar. . .
• Let L be any context-free language, and k ≥ 1. Then:

L′
k = {w(##w)k | w ∈ L}

is a context-sensitive grammar that is intent-secure for up to k blanks for ι ∈ T
• Not practical, just a proof of concept. . .

⇒ more complex grammar classes can bring more security properties

Injections study Formalization and security properties GT MFS, March 28th, 2023 21 / 22

Conclusion and perspectives

Conclusion
• It is generally possible to use static analysis to verify the absence of injection vulnerability

in a template
• Grammar security is generally undecidable and most grammars are vulnerable
• Regular patterns with * should be avoided if they may contain a user input
• One should be vigilant with recursive structure if blanks can appear on both sides
• Generally, the more complex the grammar class, the more guarantee we can get

Perspectives
• Static analysis of filtering
• Black-box injection fuzzer
• Design principles for languages that are intent-secure for one blank

Injections study Conclusion and perspectives GT MFS, March 28th, 2023 22 / 22

	Introduction
	Background on formal language theory
	Formalization and security properties
	Conclusion and perspectives

