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) Context
Al expertise is a new skill in the team
= CIDRE is an Inria team focused on cybersecurity

= Two new members were recruited with a background in Al and cybersecurity

= Pierre-Francois Gimenez, Maitre de Conférences CentraleSupélec in 2020
= Yufei Han, ARP Inria in 2021

Four new PhDs started in October 2021
= Maxime Lanvin* on intrusion detection
= Adrien Schoen™ on data generation
= Vincent Raulin® on malware analysis
= Héléne Orsini on botnet detection

* | am one of their supervisors

This presentation is a brief overview of their work
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¢ Work of Maxime Lanvin
Supervisors

Ludovic Mé, Yufei Han, Pierre-Francois Gimenez, Eric Totel (Télécom SudParis), Frédéric
Majorczyk (DGA)

Context
= Work on a network intrusion detection system that monitors network packets

= Anomaly detection: we model legitimate behavior based on benign training data

= Based on Sec2graph by a previous PhD (Laetitia Leichtnam)

Goals
= Provide explanations for alerts
= Limit false positives
= Detect complex APT (Advanced Persistent Threat) attacks

Some work of starting PhDs in CIDRE on Al and cybersecurity GT stats seminar, June 9th, 2022 3/32



Approach: Sec2graph

CentraleSupélec

Approach (based on Sec2graph)
= Gather packets from a network
= Build a security objects graph
= Encode each edge of the graph into a

vector

edge of the graph from benign data
= During inference:
= Reconstruct the input with the

autoencoder
Measure the reconstruction error

Raise an alert when it exceeds a
threshold

Learn an autoencoder to reconstruct each
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CentraleSupélec

Security object graph
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Performances

Performances

= Experiment on DAPT2020 dataset with APT attacks

= Comparison with the best unsupervised solution proposed by the article (SAE)

= Sec2graph is almost always better

= It has good recall (it correctly identify a lot of attacks) and reasonable false positive rate.

But it has some limits!

v

AUC ROC AUC PR
APT attack step SAE | Sec2graph | SAE | Sec2graph
Reconnaissance 0.641 0.888 0.262 0.613
Foothold Establishment | 0.846 0.924 0.498 0.480
Lateral movement 0.634 0.802 0.014 0.603
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G Limits of the method

Very local analysis of the graph
= Each edge is processed independently

= = Embeddings and attention mechanisms could help exploiting the neighborhood

No time analysis
= Long-term, discrete attacks (APT) could evade the detector

= = graphs generally hide the temporal dependencies between objects

No explanation
= We know which edges have high anomaly score, but we don’t know why

= = Very few explanation methods for unsupervised learning

We focus on explanations for now
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¢ Unsupervised explanation

The issue
= We had a lot of false positives on the dataset that we could not understand

= There exist a lot of explanation techniques... (LIME, salient maps, counterfactual
explanation. . .)

= ...but little work on explanation for unsupervised learning!

Our approach
= For each edge, we have the input vector and the output (reconstructed) vector

= First idea: compute the error feature-wise. However, some feature are harder to
reconstruct than others, so the explanation is very noisy!

= Second idea: modelize the distribution of reconstruction error per feature

Some work of starting PhDs in CIDRE on Al and cybersecurity GT stats seminar, June 9th, 2022 8 /32



¢ Statistical explanation
Our current approach
= We learn the model with benign data
= We compute reconstruction error of another set of benign data
= For each feature, we estimate its distribution of reconstruction error

= During inference, we use the product of the p-value of the reconstruction error for each
feature

= The detection threshold is based on this p-value

= |t is really easy to isolate the contribution of each feature and output the most influential
features to an expert

Results
= Qur detection performances got a little bit better

= |t allowed us to find serious labeling issues in the dataset we were using!
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& Conclusion

Article on the problematic dataset
= An attack was not correctly labeled
= After the fix, our method has less false positive. . .
= ...and supervised methods from literature have worse results!

= We believe supervised models of the state of the art were overfitted

Upcoming work
= Enhance the explanation method (maybe with the help of a statistician?)
= Apply the method to industrial protocols as well

= Integrate embeddings or time models
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Work of Adrien Schoen

SentraleSupélec

Supervisors
Ludovic Mé, Yufei Han, P.F. Gimenez, Grégory Blanc (TSP), Frédéric Majorczyk (DGA)

Context
= Network intrusion detection systems (NIDS) monitor network packets

= To evaluate these NIDSes, we need benign and malicious network traffic
= Malicious traffic can be generated with dedicated tools

= Due to class imbalance, we need a lot more benign traffic

How to get benign traffic
= Record it from a real network — privacy issues, tedious experiment, obsolescence, etc.

= Record it from a simulated network — requires modeling and simulating end users, etc.

= Generate it with statistical and machine learning methods — our approach
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¢ First challenge: generation

CentraleSupélec

Different scales

= There are different scales of data in network
packets

= A pcap file is a list of packets

= Each packet is part of a flow (a connection)

= Flows are not independent from each other

= Each packet is composed of encapsulated
protocol headers and a payload

Different issues
= Network packets flows are time-series,
= Header complies with network protocols,
= Payload is generally encrypted
= Etc.
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¢ Generation methods
Statistical methods
Bayesian networks are probabilistic graphical models
= Advantages: explainable model, easy to train, fast generation (4 a dynamic version for
time series generation)

= Disadvantages: few implementations, notably for both discrete and numeric features.
Theoretical issues with determinism (faithfulness assumption not satisfied)

Deep learning models

= Variational autoencoder (VAE)

= Advantages: not too complex,
= Disadvantages: not the best performances, hard to explain

= Generative adversarial network (GAN) — what we are using right now

= Advantages: good performances
= Disadvantages: difficult to train (two models), mode collapse, hard to explain
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¢ What does our generation look like?

CentraleSupélec

Here is an example of a flow
description generation
= We use an embedding for some
discrete data such as IP address,
source port, protocol, etc.
= Generation is done by a GAN
= The generation is not perfect:
source port and destination port
are not coherent

Duration Proto Src P Addr Src Pt Dst IP Addr Dst Pt Packets Bytes
0 0000921 | TCP 192.168.220.15 80 192.168.220.15 80 2 54 = This asks a question: how to
1 0002552 | TCP 192.168.2009 40289 96.76.60.29 39151 | 4 1581 evaluate the generation?
2 0000017 | TCP 192.168.220.4 443 192.168.220.6 445 3 740
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¢ Second challenge: evaluation

CentraleSupélec

Criteria and scoring functions
We distinguish two notions:
= Evaluation criteria are very general properties of the generated data

= Scoring functions are functions that assess one or more criteria

Evaluation criteria
= Realism: synthetic sample should belong in the real distribution
= Diversity: all relevant parts of the real distribution should be generable

= Originality: new samples should be different from samples of the training set

A fourth criteria
Network data are discrete (not like pictures), so we need a fourth criteria:

= Compliance: the network sample should conform to protocols specifications
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¢ Scoring functions

Scoring functions survey
= There is no consensus yet on how to evaluate synthetic network data

= Many generation work evaluate only some criteria (compliance for example)
= We did a survey of scoring functions from various domain:

tabular (vector) data

= image

= textual data

= network traffic

= We expect to use several functions depending on the criteria and the layer

= textual scores are adapted to temporal series like packet flow

= tabular scores are adapted to headers/flow description generation
= image scores are not easily adaptable

= network traffic scores could evaluate whole pcap files
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Scoring functions examples

Data type ‘ Scoring functions ‘ Input ‘ Realism ‘ Diversity ‘ Originality ‘ Comp.
Tabular Recall, Density Distribution v
Precision, Coverage | Distribution v
Authenticity Sample v
Image Inception Score, FID | Distribution v v
MiFID Distribution v v v
Textual BLEU, ROUGE Sample v
WMD Sample v v
BERTscore Distribution v v
SelfBLEU Distribution N
Network | DKC, PcapGAN test Sample v
traffic PAC-GAN test Sample v
GvR Distribution v v
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& Conclusion

Upcoming work: evaluation
= We didn’t decide yet what scoring functions to use for which scales

= Next step will be implementation

Upcoming work: generation

Top-down approach: we chose to generate from packet flow to their actual content
= We are fixing the flow description generation
= Next step is packet stream generation
= And finally payloads
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K2y Work of Vincent Raulin

Supervisors

Pierre-Francois Gimenez, Valérie Viet Triem Tong, Yufei Han

Context
= The malware threat is ever-growing
= Automatic analyzers are required to help the experts keep up with the pace
= There are two main categories of malware analysis:

= Static analysis: the binary file is analyzed
= Dynamic analysis: the malware is executed and monitored

= We focus on dynamic analysis, where it's more difficult for the malware to hide its
malicious activities
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) State of the art

CentraleSupélec

A semantic gap

H Detection Model
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The state of the art focuses on:

= source of information, i.e. what to monitor (malware experts)

= statistical and machine learning models to detect, classify and cluster malware (stats/Al
experts)
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¢ What is missing?

Little work on representation

= How data is represented can have a huge impact on model performances (cf. Maxime's
work with security objects graphs)

= Dynamic analysis data is generally low-level and noisy: it's difficult to understand the
behavior of a malware from such a trace

= Models better work with high-level data, which less objects but more structure
= There is currently a semantic gap between low-level data and high-level model

= Creating such a representation requires both malware and model expertise

Our first step was to survey the state of the art of dynamic trace representation
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¢ State of the art of dynamic trace representation

socket 1 1
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Sequences of system calls (no
parameters)

Transition frequencies between
system calls or groups of calls

Cannot convey enough
information

Easily subject to adversarial
attacks

Behavior difficult to distinguish
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¢ State of the art of dynamic trace representation

Socket :
158.163.25.2:22

m = Different system resources can be seen as

object that can be included in some way.
= One sequence of actions per object

= Links between actions on same or related
objects

= Still low level representation
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¢ State of the art of dynamic trace representation

m = Show the objects and the actions

| on them

= Allows to see the links between
objects

= Shows the information flows
Socket : which convey program behavior

@ | 158.163.25.2:22 = Too large for experts
-»‘\ | .

. . | = Sample-centric

<@ i
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¢ State of the art of dynamic trace representation

CentraleSupélec
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= Local behavior is absent
— ™ = Monitoring of an entire network
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¢ Research questions

Our research questions

= How to make a representation more robust to evading techniques?

= by removing some noise, it's more difficult for an attacker to modify the representation of the
trace of a malware

= How to make a representation abstract enough to make it cross-platform?

= require only using high-level objects (socket, file, threads, etc.) and no OS-dependent values
(system calls, etc.)

= What elements make the representation of an execution trace visually exploitable for a
human expert?

= We will need to summarize a potentially huge representation to a manageable size

= How to ensure a representation reflects all the malicious actions of a malware infection
event?

= Malware creators may find a way to abuse OS quirks and evade the representation
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& Conclusion

CentraleSupélec

Upcoming work

= A big chunk of time was dedicated to the experimental pipeline (Web crawler, VM
preparation, Cuckoo analysis, etc.) but it's now ready for use

= We are still working on our representation. It includes network usage and we are working
on file system usage

= Once we have a first version, we will use a simple model to compare it with a baseline
representation, and work iteratively from there
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¢ Work of Hélene Orsini

CentraleSupélec

Supervisors
Yufei Han, Valérie Viet Triem Tong, David Lubicz (DGA)

Context
= A lot of methods have been used so far for botnet detection: statistics over network
flows, aggregation on a time window, graph-based, ...
= Theses methods generally require a lot of parameters set empirically, requiring both
experts and time
= There is a loss of information when using overall statistics and aggregation

= Auto-ML could alleviate such problems

Goals
= Machine Learning-driven Network Traffic Flow based Intrusion Detection System (IDS)

v
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¢ Methodology

Technology used

= Auto-ML: avoiding feature engineering, learn directly from raw categorical / numerical
data

= Transferable ML (Meta-ML): you can reapply your detection model across different
botnet traffic datasets without retraining efforts / much retuning efforts

= Explainability: you can figure out which factors / which features trigger the detection /
improve transparency of the detection model

Proposal

Approach based on GraphSage that takes into account the context of each communication
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I3 GraphSage method

CentraleSupélec
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CentraleSupélec

The proposed Graph-Sage model

Does the traffic contain Which botnet campaign does
anything malicious? the network traffic belong to?
Network Botnet
Traffic Data campaign
SetA classification
\ Botnet campaigns ?
\ - e —
No
Adapt the Graph-Sage based
Benign analysis model to a new
traffics network traffic data set
Detection of
malicious

traffics

Campaign
classification

Anew
network traffic
data set B

Some work of starting PhDs in CIDRE on Al and cybersecurity

-—————-’

¢ Proposal and next steps

Expected contributions
= Unsupervised method

= No need to set up parameters
(AutoML)

= Adaptability (i.e., no need to
retrain totally)

= Explainability

Next steps

= Botnet traffic detection: adapt
to another dataset

= Improve botnet classification

= Continue the state of the art
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(3% Talk conclusion

Conclusion
= We tackle various domains of security with Al

= These 4 PhD students started 8 months ago and should be ready to publish in a good
conference by the end of 2022

= Qur research in Al&Cyber goes beyond what these PhD students do

= We want to create collaborations between security experts and stats/ML experts

The Al&Cyber research in CIDRE is new but thriving!
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