Some work of starting PhDs in CIDRE on AI and cybersecurity

Pierre-François Gimenez CentraleSupélec, IRISA

GT stats seminar, June 9th, 2022

Al expertise is a new skill in the team

- CIDRE is an Inria team focused on cybersecurity
- Two new members were recruited with a background in AI and cybersecurity
 - Pierre-François Gimenez, Maître de Conférences CentraleSupélec in 2020
 - Yufei Han, ARP Inria in 2021

Four new PhDs started in October 2021

- Maxime Lanvin* on intrusion detection
- Adrien Schoen* on data generation
- Vincent Raulin* on malware analysis
- Hélène Orsini on botnet detection
- * I am one of their supervisors

This presentation is a brief overview of their work

Work of Maxime Lanvin

Supervisors

Ludovic Mé, Yufei Han, Pierre-François Gimenez, Éric Totel (Télécom SudParis), Frédéric Majorczyk (DGA)

Context

- Work on a network intrusion detection system that monitors network packets
- Anomaly detection: we model legitimate behavior based on benign training data
- Based on Sec2graph by a previous PhD (Laetitia Leichtnam)

Goals

- Provide explanations for alerts
- Limit false positives
- Detect complex APT (Advanced Persistent Threat) attacks

Approach: Sec2graph

Approach (based on Sec2graph)

- Gather packets from a network
- Build a security objects graph
- Encode each edge of the graph into a vector
- Learn an autoencoder to reconstruct each edge of the graph from benign data
- During inference:
 - Reconstruct the input with the autoencoder
 - Measure the reconstruction error
 - Raise an alert when it exceeds a threshold

Security object graph

Performances

Performances

- Experiment on DAPT2020 dataset with APT attacks
- Comparison with the best unsupervised solution proposed by the article (SAE)
- Sec2graph is almost always better
- It has good recall (it correctly identify a lot of attacks) and reasonable false positive rate. But it has some limits!

	AU	C ROC	AUC PR	
APT attack step	SAE	Sec2graph	SAE	Sec2graph
Reconnaissance	0.641	0.888	0.262	0.613
Foothold Establishment	0.846	0.924	0.498	0.480
Lateral movement	0.634	0.802	0.014	0.603

Very local analysis of the graph

- Each edge is processed independently
- ${\scriptstyle \bullet } \Rightarrow$ Embeddings and attention mechanisms could help exploiting the neighborhood

No time analysis

- Long-term, discrete attacks (APT) could evade the detector
- ${\scriptstyle \bullet } \, \Rightarrow$ graphs generally hide the temporal dependencies between objects

No explanation

- We know which edges have high anomaly score, but we don't know why
- \Rightarrow Very few explanation methods for unsupervised learning

We focus on explanations for now

Unsupervised explanation

The issue

- We had a lot of false positives on the dataset that we could not understand
- There exist a lot of explanation techniques... (LIME, salient maps, counterfactual explanation...)
- ... but little work on explanation for unsupervised learning!

Our approach

- For each edge, we have the input vector and the output (reconstructed) vector
- First idea: compute the error feature-wise. However, some feature are harder to reconstruct than others, so the explanation is very noisy!
- Second idea: modelize the distribution of reconstruction error per feature

Our current approach

- We learn the model with benign data
- We compute reconstruction error of another set of benign data
- For each feature, we estimate its distribution of reconstruction error
- During inference, we use the product of the p-value of the reconstruction error for each feature
- The detection threshold is based on this p-value
- It is really easy to isolate the contribution of each feature and output the most influential features to an expert

Results

- Our detection performances got a little bit better
- It allowed us to find serious labeling issues in the dataset we were using!

Article on the problematic dataset

- An attack was not correctly labeled
- After the fix, our method has less false positive...
- ... and supervised methods from literature have worse results!
- We believe supervised models of the state of the art were overfitted

Upcoming work

- Enhance the explanation method (maybe with the help of a statistician?)
- Apply the method to industrial protocols as well
- Integrate embeddings or time models

Work of Adrien Schoen

Supervisors

Ludovic Mé, Yufei Han, P.F. Gimenez, Grégory Blanc (TSP), Frédéric Majorczyk (DGA)

Context

- Network intrusion detection systems (NIDS) monitor network packets
- To evaluate these NIDSes, we need benign and malicious network traffic
- Malicious traffic can be generated with dedicated tools
- Due to class imbalance, we need a lot more benign traffic

How to get benign traffic

- Record it from a real network \rightarrow privacy issues, tedious experiment, obsolescence, etc.
- Record it from a simulated network \rightarrow requires modeling and simulating end users, etc.
- Generate it with statistical and machine learning methods \rightarrow our approach

First challenge: generation

Different scales

- There are different scales of data in network packets
 - A pcap file is a list of packets
 - Each packet is part of a flow (a connection)
 - Flows are not independent from each other
 - Each packet is composed of encapsulated protocol headers and a payload

Different issues

- Network packets flows are time-series,
- Header complies with network protocols,
- Payload is generally encrypted
- Etc.

Generation methods

Statistical methods

Bayesian networks are probabilistic graphical models

- Advantages: explainable model, easy to train, fast generation (+ a dynamic version for time series generation)
- Disadvantages: few implementations, notably for both discrete and numeric features. Theoretical issues with determinism (faithfulness assumption not satisfied)

Deep learning models

- Variational autoencoder (VAE)
 - Advantages: not too complex,
 - Disadvantages: not the best performances, hard to explain
- Generative adversarial network (GAN) \rightarrow what we are using right now
 - Advantages: good performances
 - Disadvantages: difficult to train (two models), mode collapse, hard to explain

What does our generation look like?

	Duration	Proto	Src IP Addr	Src Pt	Dst IP Addr	Dst Pt	Packets	Bytes
0	0.000921	тср	192.168.220.15	80	192.168.220.15	80	2	54
1	0.002552	TCP	192.168.200.9	40289	96.76.60.29	39151	4	1581
2	0.000017	ТСР	192.168.220.4	443	192.168.220.6	445	3	740

Here is an example of a flow description generation

- We use an embedding for some discrete data such as IP address, source port, protocol, etc.
- Generation is done by a GAN
- The generation is not perfect: source port and destination port are not coherent
- This asks a question: how to evaluate the generation?

Second challenge: evaluation

Criteria and scoring functions

We distinguish two notions:

- Evaluation criteria are very general properties of the generated data
- Scoring functions are functions that assess one or more criteria

Evaluation criteria

- Realism: synthetic sample should belong in the real distribution
- Diversity: all relevant parts of the real distribution should be generable
- Originality: new samples should be different from samples of the training set

A fourth criteria

Network data are discrete (not like pictures), so we need a fourth criteria:

- Compliance: the network sample should conform to protocols specifications

Scoring functions

Scoring functions survey

- There is no consensus yet on how to evaluate synthetic network data
- Many generation work evaluate only some criteria (compliance for example)
- We did a survey of scoring functions from various domain:
 - tabular (vector) data
 - image
 - textual data
 - network traffic
- We expect to use several functions depending on the criteria and the layer
 - textual scores are adapted to temporal series like packet flow
 - tabular scores are adapted to headers/flow description generation
 - image scores are not easily adaptable
 - network traffic scores could evaluate whole pcap files

Scoring functions examples

Data type	Scoring functions	Input	Realism	Diversity	Originality	Comp.
Tabular	Recall, Density	Distribution		\checkmark		
	Precision, Coverage	Distribution	\checkmark			
	Authenticity	Sample			\checkmark	
Image	Inception Score, FID	Distribution	\checkmark	\checkmark		
	MiFID	Distribution	\checkmark	\checkmark	\checkmark	
Textual	BLEU, ROUGE	Sample	\checkmark			
	WMD	Sample	\checkmark	\checkmark		
	BERTscore	Distribution	\checkmark	\checkmark		
	SelfBLEU	Distribution		\checkmark		
Network	DKC, PcapGAN test	Sample				\checkmark
traffic	PAC-GAN test	Sample				\checkmark
	GvR	Distribution	\checkmark	\checkmark		

Upcoming work: evaluation

- We didn't decide yet what scoring functions to use for which scales
- Next step will be implementation

Upcoming work: generation

Top-down approach: we chose to generate from packet flow to their actual content

- We are fixing the flow description generation
- Next step is packet stream generation
- And finally payloads

Work of Vincent Raulin

Supervisors

Pierre-François Gimenez, Valérie Viet Triem Tong, Yufei Han

Context

- The malware threat is ever-growing
- Automatic analyzers are required to help the experts keep up with the pace
- There are two main categories of malware analysis:
 - Static analysis: the binary file is analyzed
 - Dynamic analysis: the malware is executed and monitored
- We focus on dynamic analysis, where it's more difficult for the malware to hide its malicious activities

State of the art

The state of the art focuses on:

- source of information, i.e. what to monitor (malware experts)
- statistical and machine learning models to detect, classify and cluster malware (stats/AI experts)

What is missing?

Little work on representation

- How data is represented can have a huge impact on model performances (cf. Maxime's work with security objects graphs)
- Dynamic analysis data is generally low-level and noisy: it's difficult to understand the behavior of a malware from such a trace
- Models better work with high-level data, which less objects but more structure
- There is currently a semantic gap between low-level data and high-level model
- Creating such a representation requires both malware and model expertise

Our first step was to survey the state of the art of dynamic trace representation

- Sequences of system calls (no parameters)
- Transition frequencies between system calls or groups of calls
- Cannot convey enough information
- Easily subject to adversarial attacks
- Behavior difficult to distinguish

- Different system resources can be seen as object that can be included in some way.
- One sequence of actions per object
- Links between actions on same or related objects
- Still low level representation

- Show the objects and the actions on them
- Allows to see the links between objects
- Shows the information flows which convey program behavior
- Too large for experts
- Sample-centric

- Shows which processes start which ones
- Shows what machines communicate with each other
- Show the accessed files
- Local behavior is absent
- Monitoring of an entire network
- Cannot be done with our experimental setup

Research questions

Our research questions

- How to make a representation more robust to evading techniques?
 - by removing some noise, it's more difficult for an attacker to modify the representation of the trace of a malware
- How to make a representation abstract enough to make it cross-platform?
 - require only using high-level objects (socket, file, threads, etc.) and no OS-dependent values (system calls, etc.)
- What elements make the representation of an execution trace visually exploitable for a human expert?
 - · We will need to summarize a potentially huge representation to a manageable size
- How to ensure a representation reflects all the malicious actions of a malware infection event?
 - Malware creators may find a way to abuse OS quirks and evade the representation

Conclusion

Upcoming work

- A big chunk of time was dedicated to the experimental pipeline (Web crawler, VM preparation, Cuckoo analysis, etc.) but it's now ready for use
- We are still working on our representation. It includes network usage and we are working on file system usage
- Once we have a first version, we will use a simple model to compare it with a baseline representation, and work iteratively from there

Work of Hélène Orsini

Supervisors Yufei Han, Valérie Viet Triem Tong, David Lubicz (DGA)

Context

- A lot of methods have been used so far for botnet detection: statistics over network flows, aggregation on a time window, graph-based, ...
- Theses methods generally require a lot of parameters set empirically, requiring both experts and time
- There is a loss of information when using overall statistics and aggregation
- Auto-ML could alleviate such problems

Goals

- Machine Learning-driven Network Traffic Flow based Intrusion Detection System (IDS)

Methodology

Technology used

- Auto-ML: avoiding feature engineering, learn directly from raw categorical / numerical data
- Transferable ML (Meta-ML): you can reapply your detection model across different botnet traffic datasets without retraining efforts / much retuning efforts
- Explainability: you can figure out which factors / which features trigger the detection / improve transparency of the detection model

Proposal

Approach based on GraphSage that takes into account the context of each communication

GraphSage method

Proposal and next steps

Expected contributions

- Unsupervised method
- No need to set up parameters (AutoML)
- Adaptability (i.e., no need to retrain totally)
- Explainability

Next steps

- Botnet traffic detection: adapt to another dataset
- Improve botnet classification
- Continue the state of the art

Talk conclusion

Conclusion

- We tackle various domains of security with AI
- These 4 PhD students started 8 months ago and should be ready to publish in a good conference by the end of 2022
- Our research in AI&Cyber goes beyond what these PhD students do
- We want to create collaborations between security experts and stats/ML experts

The Al&Cyber research in CIDRE is new but thriving!