Robust malware detectors by design

Pierre-François Gimenez, CentraleSupélec Sarath Sivaprasad and Mario Fritz, CISPA Helmholtz Center for Information Security

DefMal workshop, June 3rd, 2024

Malware

A malware is a malicious software: botnet, encryption, backdoor, cryptocurrency mining...

Malware analysis

Two main categories of malware analysis:

- static analysis, where the software is not run. Extracted features: control flow graph, file metadata, library imports, presence of encryption, etc.
- dynamic analysis, where the software is monitored during its execution. Extracted features: network activity, modified files, system calls list, etc.

These features can be used by machine learning to help detect, classify and cluster malware

DOS Header
DOS Stub
NT Headers - PE signature - File Header - Optional Header
Section Table
Section 1
Section 2
Section 3
Section 4
Section n

Windows executable file

Our work

- We focus on Windows malware, the most common desktop target
- We restrict our study to static analysis for its ease of experiment and scaling capability

PE format

- Windows executables generally follow the PE (Portable Executable) format
- A lot of legacy content for backward compatibility (DOS header and DOS stub, etc.)
- The format is flexible: the order of the sections is free, some parts are optional, etc.

Attacks on machine learning

- Deep learning is increasingly used to analyze malware
- This work focuses on the security of machine learning
- Many attacks against machine learning, at different stages (data collection, learning, inference) and targeting different properties (integrity, privacy, etc.)

Evasion attacks

- The goal of the attacker is to modify slightly the features to change the predicted class
- Formally, for an input $x \in \mathbb{R}^n$, the attacker looks for a "small" $\epsilon \in \mathbb{R}^n$ such as $\operatorname{argmax}_c f_c(x) \neq \operatorname{argmax}_c f_c(x+\epsilon)$ (i.e., the predicted class changed)

Question: how to make malware classifiers more robust?

1 Introduction

2 Adversarial examples against malware detectors

3 Taxonomy of threats and manually selected features

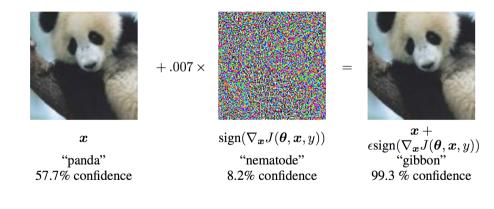
④ Certifiable robustness by design

5 Experiments

Adversarial examples against malware detectors

The issue

Even very accurate classifiers can be fooled by slightly modifying the input



What about malware?

Adversarial examples

$\mathsf{Image} \neq \mathsf{malware}$

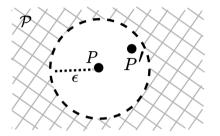
- We cannot randomly modify the malware and expect it to work correctly
- Images are continuous: small variations do not change their meaning
- Programs are discrete: opcode "0x60" is very different from opcode "0x61"
- Perturbations on images must stay small to be invisible to human eyes
- Perturbations on programs don't have this constraint

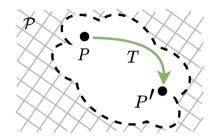
How to attack malware detectors

Most common approach: modify the malware with semantics-preserving operations:

- file padding
- header perturbation
- API import addition
- ... and many more

Detection evasion





Attack on images. The attacker looks for an image within a ϵ -ball

Attack on malware. P' must have the same behavior as P

Current techniques to make detectors robust against adversarial attacks assume the perturbation is small. This assumption is not reasonable for malware!

Taxonomy of threats and manually selected features

Features and adversarial attacks

Methodology used in the literature

- Start with a feature set, like EMBER
- Analyze the transformations used for adversarial attacks and their effects on these features
- Modify the feature set to remove fragile features

Our methodology

- Analyze the transformations used for adversarial attacks and their effects on programs
- Deduce what measures would be difficult to alter
- Deduce a feature set

We can expect better robustness against adversarial attacks with our methodology

Taxonomy of threats

Transformation	S	D	Required capability
DOS header modification	\checkmark		none [9, 10]
Optional header modification	\checkmark		none [9]
Padding addition	\checkmark		none [17]
Content shifting	\checkmark		none [9]
Semantical nope insertion	\checkmark	\checkmark	none [22, 30]
Remove signature	\checkmark		none
Add trustworthy signature	\checkmark		2%
Readable strings addition	\checkmark		none
Readable strings removal	1		none
Static import addition	\checkmark		none [9]
Static import removal	\checkmark		
Embedded resources addition	\checkmark		none
Embedded resources removal	√ √		■ +?%
Bytes n-grams modification	\checkmark	\checkmark	none [34]
Opcodes n-grams modification	\checkmark	\checkmark	none [34]
Byte/section entropy	\checkmark		none
Section addition or extension	\checkmark		none [9]
Section deletion	\checkmark		,⇒%
File access addition		\checkmark	none
File access removal		\checkmark	■+≫
Registry access addition		\checkmark	none
Registry access removal		\checkmark	∎+≫
System/API call addition		\checkmark	none [18]
System/API call removal		\checkmark	■ +≫
System/API call n-grams modification	\checkmark	\checkmark	none [18]
CPU/Memory/IO usage modification		\checkmark	
Control-flow graph modification	\checkmark	\checkmark	none
Grayscale image modification	\checkmark		none
Using undocumented Windows API	\checkmark	\checkmark	+ %

- Different transformations require different capabilities
- Some transformations are easy: header modification, signature removal, section addition
- Some attacks are more difficult to perform: system call removal, trustworthy signatures addition, etc.
- We distinguish two capabilities:
 - The attacker has source access:
 - The attacker has the time and skill to reverse and modify: ³/₂

Feature set proposal

EMBER: state-of-the-art feature set

- 1871 features
- Examples: system call statistics, printable strings statistics, section description, header description, etc.

Manually selected features

- 40 features
- Examples: imported functions count, DOS header modification, etc.
- The intersection of the feature sets is very small: 4 features
- We will later see the impact on detection performance and robustness

This is one way to make attacks more difficult. What about the detectors themselves?

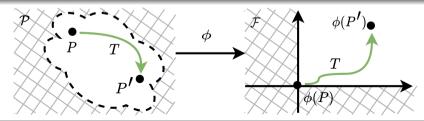
Certifiable robustness by design

Certifiably robust detector by design

Related work

- Prior work^a: use only features that can be increased by transformations along a monotonic classifier
- Intuition: whatever the attacker does, the output of the classifier can only increase
- We proved that it indeed leads to robust classifiers with our formalization
- The accuracy results are underwhelming

^aÍncer Romeo et al.. Adversarially robust malware detection using monotonic classification. IWSPA'18



Intuition

And with a more complex feature mapping?

- In this previous work, the feature mapping is just a projection (keep or drop features)
- · We could use examples of adversarial attacks to automatically learn the feature mapping
- Ideally, we would learn the feature mapping and the classifier jointly

Our proposition: learn the feature mapping

- Consider the attack that replaces one API call with a similar one (CreateFileA and CreateFileW)
- This transformation modifies features f_1 (number of CreateFileA) and f_2 (number of CreateFileW) such as $f_1 \leftarrow f_1 + 1$ and $f_2 \leftarrow f_2 1$
- The previous work would drop f_2 (it can be decreased)
- Our model could create the feature $f_3 = f_1 + f_2$ (number of CreateFileA and CreateFileW) and not lose much information

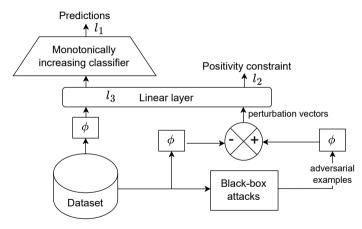
How to do that?

ERDALT

- We show that every robust classifier can be structured as a monotonic classifier on top of some specially crafted feature mapping
- We propose to learn a neural network with two parts:
 - a first layer for the role of feature mapping
 - monotonic layers for the role of the detection
- We can prove, under some assumption, that this model is robust (by design)

We name our approach ERDALT: *Empirically Robust by Design with Adversarial Linear Transformation*

ERDALT: empirically robust by design malware detector



ERDALT

- There is a first linear layer fitted so it maps perturbations vectors to positive values (loss l₁)
- The rest of the network is a monotonically increasing classifier (loss l₂)
- A third loss encourages a sparse linear layer (loss l₃)

Properties

Assumption

- To obtain theoretical guarantees, we need to make an assumption about the attacks
- We assume the effect of the transformations on the features is independent from the initial malware
- This is the case of many transformations:
 - A padding transformation will add X bytes to a section
 - Replacing an API call with a similar one will remove 1 to a feature and add 1 to another

Linear feature mapping

- A linear feature mapping ensures that the effect of two transformations on the features is simply the sum of their effects
- If the model is robust against all elementary transformations, then it is robust against any combination of transformations!

Experiments

Experimental protocol

Dataset and features

- Dataset: created by EURECOM and Avast, contains 60,000 malware
- Features:
 - EMBER (state-of-the-art): 1871 features
 - Manually selected features: 40 features

Adversarial attacks

- secml-malware, a library by Luca Demetrio
- Applies semantics-preserving transformations with a genetic algorithm

Metrics

- Performances are evaluated with ROC AUC
- Robustness: proportion of malware not successfully attacked

Performance with no protections

Model	Manual features		EM	BER
	ROC AUC	Robustness	ROC AUC	Robustness
Baseline network	89.9%	100%	91.6%	82.0%
Monotonic network	69.0%	100%	87.4%	71.5%
Random Forest	94.6%	98.5%	96.2%	81.0%
AdaBoost	85.0%	98.0%	94.2%	75.5%
<i>k</i> -nn	83.7%	93.5%	88.6%	0%
Decision tree	84.1%	99.5%	96.2%	67.0%
Monotonic GBT	76.2%	100%	92.7%	73.5%
GBT	92.3%	99.0%	97.5%	75.0%

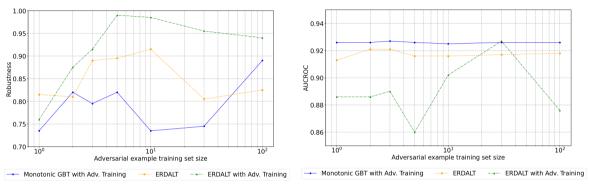
- Feature sets impact a lot the AUROC and robustness
- Manually selected features lead to much higher robustness and limited ROC AUC loss
- We empirically confirm that manual features + monotonicity lead to 100% robustness

Performances with protections

Protection	Model	EMBER		
		ROC AUC	Robustness	
Increasing-only features	Random Forest Monotonic GBT Gradient-boosted trees	95.2% 86.7% 93.8%	100% 100% 100%	
Adversarial training	Random Forest Monotonic GBT Gradient-boosted trees	97.6% 92.7% 97.6%	94.5% 95.5% 96.5%	
ERDALT	Neural network	93.0%	96.0%	
$ERDALT + adv. \ training$	Neural network	85.5%	100%	

Adversarial training yields the best ROC AUC, but the lowest robustness

ERDALT vs adversarial training



- Only a limited number of examples are enough to obtain very high robustness
- ERDALT and adversarial training are complementary and should be used together to maximize robustness, but they introduce a ROC penalty

Ablation study

Ablation study

- A typical ML experiment to analyze the effect of each component
- We can conclude that both the linear layer and the monotonicity are necessary for high robustness

Linear layer	Monotonicity	ROC AUC	Robustness
×	×	91.6%	82.0%
\checkmark	×	94.3%	91.0%
×	\checkmark	87.4%	71.5%
\checkmark	\checkmark	93.0%	96.0%

Conclusion

Adversarial attacks against malware detectors

- They work very differently from attacks on images
- Provably robust methods rely on the assumption that the perturbation is small
- We propose a provably robust method that does not rely on this unrealistic assumption

How to make a robust detector?

- Craft a good feature set from a threat model and do not fix an already fragile feature set
- Use a monotonic model with increasing features but expect a large performance drop
- Use ERDALT, which learns a feature mapping, and expect a smaller performance drop
- It can be combined with adversarial training as well
- This work has been submitted to ACSAC'24