
Robust malware detectors by design

Pierre-François Gimenez, CentraleSupélec
Sarath Sivaprasad and Mario Fritz, CISPA Helmholtz Center for Information Security

DefMal workshop, June 3rd, 2024



Context

Malware
A malware is a malicious software: botnet, encryption, backdoor, cryptocurrency mining. . .

Malware analysis
Two main categories of malware analysis:

• static analysis, where the software is not run. Extracted features: control flow graph, file
metadata, library imports, presence of encryption, etc.

• dynamic analysis, where the software is monitored during its execution. Extracted
features: network activity, modified files, system calls list, etc.

These features can be used by machine learning to help detect, classify and cluster malware

Robust malware detectors by design Introduction DefMal workshop, June 3rd, 2024 2 / 26



Windows executable file

Our work
• We focus on Windows malware, the most common desktop

target
• We restrict our study to static analysis for its ease of

experiment and scaling capability

PE format
• Windows executables generally follow the PE (Portable

Executable) format
• A lot of legacy content for backward compatibility (DOS

header and DOS stub, etc.)
• The format is flexible: the order of the sections is free, some

parts are optional, etc.

Robust malware detectors by design Introduction DefMal workshop, June 3rd, 2024 3 / 26



Adversarial attacks

Attacks on machine learning
• Deep learning is increasingly used to analyze malware
• This work focuses on the security of machine learning
• Many attacks against machine learning, at different stages (data collection, learning,

inference) and targeting different properties (integrity, privacy, etc.)

Evasion attacks
• The goal of the attacker is to modify slightly the features to change the predicted class
• Formally, for an input x ∈ Rn, the attacker looks for a “small” ϵ ∈ Rn such as

argmaxc fc(x) ̸= argmaxc fc(x + ϵ) (i.e., the predicted class changed)

Question: how to make malware classifiers more robust?

Robust malware detectors by design Introduction DefMal workshop, June 3rd, 2024 4 / 26



1 Introduction

2 Adversarial examples against malware detectors

3 Taxonomy of threats and manually selected features

4 Certifiable robustness by design

5 Experiments

Robust malware detectors by design Introduction DefMal workshop, June 3rd, 2024 5 / 26



Adversarial examples against malware detectors

Robust malware detectors by design Adversarial examples against malware detectors DefMal workshop, June 3rd, 2024 6 / 26



The issue

Even very accurate classifiers can be fooled by slightly modifying the input

What about malware?

Robust malware detectors by design Adversarial examples against malware detectors DefMal workshop, June 3rd, 2024 7 / 26



Adversarial examples

Image ̸= malware
• We cannot randomly modify the malware and expect it to work correctly
• Images are continuous: small variations do not change their meaning
• Programs are discrete: opcode "0x60" is very different from opcode "0x61"
• Perturbations on images must stay small to be invisible to human eyes
• Perturbations on programs don’t have this constraint

How to attack malware detectors
Most common approach: modify the malware with semantics-preserving operations:

• file padding
• header perturbation
• API import addition
• . . . and many more

Robust malware detectors by design Adversarial examples against malware detectors DefMal workshop, June 3rd, 2024 8 / 26



Detection evasion

Attack on images. The attacker looks for an
image within a ϵ-ball

Attack on malware. P ′ must have the same
behavior as P

Current techniques to make detectors robust against adversarial attacks assume the
perturbation is small. This assumption is not reasonable for malware!

Robust malware detectors by design Adversarial examples against malware detectors DefMal workshop, June 3rd, 2024 9 / 26



Taxonomy of threats and manually selected features

Robust malware detectors by design Taxonomy of threats and manually selected features DefMal workshop, June 3rd, 2024 10 / 26



Features and adversarial attacks

Methodology used in the literature
• Start with a feature set, like EMBER
• Analyze the transformations used for adversarial attacks and their effects on these features
• Modify the feature set to remove fragile features

Our methodology
• Analyze the transformations used for adversarial attacks and their effects on programs
• Deduce what measures would be difficult to alter
• Deduce a feature set

We can expect better robustness against adversarial attacks with our methodology

Robust malware detectors by design Taxonomy of threats and manually selected features DefMal workshop, June 3rd, 2024 11 / 26



Taxonomy of threats

• Different transformations require different capabilities
• Some transformations are easy: header modification,

signature removal, section addition
• Some attacks are more difficult to perform: system call

removal, trustworthy signatures addition, etc.
• We distinguish two capabilities:

• The attacker has source access:
• The attacker has the time and skill to reverse and

modify:

Robust malware detectors by design Taxonomy of threats and manually selected features DefMal workshop, June 3rd, 2024 12 / 26



Feature set proposal

EMBER: state-of-the-art feature set
• 1871 features
• Examples: system call statistics, printable strings statistics, section description, header

description, etc.

Manually selected features
• 40 features
• Examples: imported functions count, DOS header modification, etc.
• The intersection of the feature sets is very small: 4 features
• We will later see the impact on detection performance and robustness

This is one way to make attacks more difficult. What about the detectors themselves?

Robust malware detectors by design Taxonomy of threats and manually selected features DefMal workshop, June 3rd, 2024 13 / 26



Certifiable robustness by design

Robust malware detectors by design Certifiable robustness by design DefMal workshop, June 3rd, 2024 14 / 26



Certifiably robust detector by design

Related work
• Prior worka: use only features that can be increased by transformations along a

monotonic classifier
• Intuition: whatever the attacker does, the output of the classifier can only increase
• We proved that it indeed leads to robust classifiers with our formalization
• The accuracy results are underwhelming

aÍncer Romeo et al.. Adversarially robust malware detection using monotonic classification. IWSPA’18

Robust malware detectors by design Certifiable robustness by design DefMal workshop, June 3rd, 2024 15 / 26



Intuition

And with a more complex feature mapping?
• In this previous work, the feature mapping is just a projection (keep or drop features)
• We could use examples of adversarial attacks to automatically learn the feature mapping
• Ideally, we would learn the feature mapping and the classifier jointly

Our proposition: learn the feature mapping
• Consider the attack that replaces one API call with a similar one (CreateFileA and

CreateFileW)
• This transformation modifies features f1 (number of CreateFileA) and f2 (number of

CreateFileW) such as f1← f1 +1 and f2← f2−1
• The previous work would drop f2 (it can be decreased)
• Our model could create the feature f3 = f1 + f2 (number of CreateFileA and

CreateFileW) and not lose much information

Robust malware detectors by design Certifiable robustness by design DefMal workshop, June 3rd, 2024 16 / 26



How to do that?

ERDALT
• We show that every robust classifier can be structured as a monotonic classifier on top of

some specially crafted feature mapping
• We propose to learn a neural network with two parts:

• a first layer for the role of feature mapping
• monotonic layers for the role of the detection

• We can prove, under some assumption, that this model is robust (by design)
We name our approach ERDALT: Empirically Robust by Design with Adversarial Linear
Transformation

Robust malware detectors by design Certifiable robustness by design DefMal workshop, June 3rd, 2024 17 / 26



ERDALT: empirically robust by design malware detector

perturbation vectors

Linear layer

Dataset

adversarial
examplesBlack-box

attacks

Predictions

+-

Monotonically
increasing classifier Positivity constraint

ERDALT
• There is a first linear layer fitted

so it maps perturbations vectors
to positive values (loss l1)

• The rest of the network is a
monotonically increasing
classifier (loss l2)

• A third loss encourages a sparse
linear layer (loss l3)

Robust malware detectors by design Certifiable robustness by design DefMal workshop, June 3rd, 2024 18 / 26



Properties

Assumption
• To obtain theoretical guarantees, we need to make an assumption about the attacks
• We assume the effect of the transformations on the features is independent from the

initial malware
• This is the case of many transformations:

• A padding transformation will add X bytes to a section
• Replacing an API call with a similar one will remove 1 to a feature and add 1 to another

Linear feature mapping
• A linear feature mapping ensures that the effect of two transformations on the features is

simply the sum of their effects
• If the model is robust against all elementary transformations, then it is robust against any

combination of transformations!

Robust malware detectors by design Certifiable robustness by design DefMal workshop, June 3rd, 2024 19 / 26



Experiments

Robust malware detectors by design Experiments DefMal workshop, June 3rd, 2024 20 / 26



Experimental protocol

Dataset and features
• Dataset: created by EURECOM and Avast, contains 60,000 malware
• Features:

• EMBER (state-of-the-art): 1871 features
• Manually selected features: 40 features

Adversarial attacks
• secml-malware, a library by Luca Demetrio
• Applies semantics-preserving transformations with a genetic algorithm

Metrics
• Performances are evaluated with ROC AUC
• Robustness: proportion of malware not successfully attacked

Robust malware detectors by design Experiments DefMal workshop, June 3rd, 2024 21 / 26



Performance with no protections

Model Manual features EMBER

ROC AUC Robustness ROC AUC Robustness

Baseline network 89.9% 100% 91.6% 82.0%
Monotonic network 69.0% 100% 87.4% 71.5%
Random Forest 94.6% 98.5% 96.2% 81.0%
AdaBoost 85.0% 98.0% 94.2% 75.5%
k-nn 83.7% 93.5% 88.6% 0%
Decision tree 84.1% 99.5% 96.2% 67.0%
Monotonic GBT 76.2% 100% 92.7% 73.5%
GBT 92.3% 99.0% 97.5% 75.0%

• Feature sets impact a lot the AUROC and robustness
• Manually selected features lead to much higher robustness and limited ROC AUC loss
• We empirically confirm that manual features + monotonicity lead to 100% robustness

Robust malware detectors by design Experiments DefMal workshop, June 3rd, 2024 22 / 26



Performances with protections

Protection Model EMBER

ROC AUC Robustness

Increasing-only features Random Forest 95.2% 100%
Monotonic GBT 86.7% 100%
Gradient-boosted trees 93.8% 100%

Adversarial training Random Forest 97.6% 94.5%
Monotonic GBT 92.7% 95.5%
Gradient-boosted trees 97.6% 96.5%

ERDALT Neural network 93.0% 96.0%

ERDALT + adv. training Neural network 85.5% 100%

Adversarial training yields the best ROC AUC, but the lowest robustness
Robust malware detectors by design Experiments DefMal workshop, June 3rd, 2024 23 / 26



ERDALT vs adversarial training

• Only a limited number of examples are enough to obtain very high robustness
• ERDALT and adversarial training are complementary and should be used together to

maximize robustness, but they introduce a ROC penalty

Robust malware detectors by design Experiments DefMal workshop, June 3rd, 2024 24 / 26



Ablation study

Ablation study
• A typical ML experiment to analyze the effect of each component
• We can conclude that both the linear layer and the monotonicity are necessary for high

robustness

Linear layer Monotonicity ROC AUC Robustness

× × 91.6% 82.0%
✓ × 94.3% 91.0%
× ✓ 87.4% 71.5%
✓ ✓ 93.0% 96.0%

Robust malware detectors by design Experiments DefMal workshop, June 3rd, 2024 25 / 26



Conclusion

Adversarial attacks against malware detectors
• They work very differently from attacks on images
• Provably robust methods rely on the assumption that the perturbation is small
• We propose a provably robust method that does not rely on this unrealistic assumption

How to make a robust detector?
• Craft a good feature set from a threat model and do not fix an already fragile feature set
• Use a monotonic model with increasing features but expect a large performance drop
• Use ERDALT, which learns a feature mapping, and expect a smaller performance drop
• It can be combined with adversarial training as well
• This work has been submitted to ACSAC’24

Robust malware detectors by design Experiments DefMal workshop, June 3rd, 2024 26 / 26


	Introduction
	Adversarial examples against malware detectors
	Taxonomy of threats and manually selected features
	Certifiable robustness by design
	Experiments

