Generative AI for assessing network intrusion detection systems

Pierre-François Gimenez Researcher at Inria

Inria/AISI Workshop November 6th, 2024

The issue of data in security

Why do we need data?

- For evaluating security measures, most notably detection
- For using machine learning in cybersecurity

Current state of datasets

- Public datasets are typically run in testbed with no real users
- They can suffer from mislabelling, network and attack configurations errors, etc.
- We cannot access private data due to confidentiality and privacy reasons

 \Rightarrow we cannot confidently evaluate anomaly-based detection because of the dubious quality and the lack of realistic users

My research project: use AI to generate security data

Generative AI for assessing network intrusion detection systems

Security data generation

Goals

- Generation of network data (pcap files) and system data (logs)
- Temporal consistency and between network and system
- In-depth data quality evaluation
- Minimal expert's input

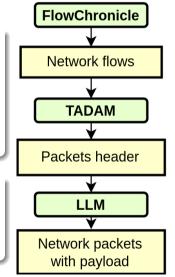
Ongoing work: pipeline prototype

- We focus on benign network data
- Input data: pcap file
- Output data: a pcap file statistically similar to the input data

Íngia

Network data example

Network data


- Raw data consist of packets, regrouped in conversation
- Cybersecurity analysis typically rely on network flow records that describe conversations statistically

No.	Time	Source	Destination		Length							
	17 0.708049029	193.51.196.138	131.254.252.23	DNS							SOA dns12.ovh.net	
	18 0.700149052	131.254.252.23	185.199.109.153	TCP	74	42578	443	[SYN]	Seq=0 W1n=64240	Len=0 MSS=1460	SACK_PERM TSval=:	17310
	19 0.718482667	185.199.109.153	131.254.252.23	TCP							=0 MSS=1440 SACK_F	
	20 0.718506446	131.254.252.23	185.199.109.153	TCP						64256 Len=0 TS	val=1731066668 TS4	er=2
	21 0.718615194	131.254.252.23	185.199.109.153	TLSv1.3	599	Client	t Hello	(SNI=	pfaimenez.fr)			
	22 0.736561279	185.199.109.153	131.254.252.23	TCP	66	443	42578	FACK1	Seg=1 Ack=534 W1	n=143872 Len=0	TSval=2597043199	TSecu
	23 0.742171740	185.199.109.153	131.254.252.23	TLSv1.3	519	Server	r Hello	Chan	de Cipher Spec.	Application Da	ta, Application Da	ata. A
	24 0.742187989	131.254.252.23	185.199.109.153	TCP							0 TSval=1731066693	
	25 0.743771063	131.254.252.23	185.199.109.153	TLSv1.3	130	Change	Ciphe	r Spec	, Application Da	ta		
	26 0.743855851	131.254.252.23	185.199.109.153	TLSv1.3	158	Annlic	ation	Data				
	27 0.747930849	131,254,252,23	185, 199, 109, 153	TLSv1.3			ation					
	28 0.763212420	185, 199, 109, 153	131.254.252.23	TCP		442	42570	CACK1	Sea-454 Ack-500	din=142072 Lan	=0 TSval=259704323	27 30
	29 0.765612735	185,199,109,153	131.254.252.23	TCP	66	449	42570	CACKI	Seg-454 Ack-600	din=143072 Lon	=0 TSval=25970432	26 TS
	30 0.765612978	185.199.109.153	131.254.252.23	TLSv1.3			ation		acd-404 MCK-000	MAIN-240072 CON	-0 10441-200104023	
	31 0.765763178	131.254.252.23	185.199.109.153	TLSV1.3	131	Applic	ation	Data				
	32 0.766914783			TCP		white rec	ADERO	CACK	F40 4-1 4400		n=0 TSval=25970433	
		185.199.109.153	131.254.252.23	TCP	00	443	42578	LACK	Sed=519 ACK=1190	W1n=145408 Le	n=0 TSval=25970432	230 1
	33 0.784918198	185.199.109.153	131.254.252.23						Sed=218 MCK=1551	W10=145408 Le	n=0 TSval=25970433	248 1
	34 0.851003286	185.199.109.153	131.254.252.23	TLSv1.3		Applic	cation	Data				
	35 0.851204999	131.254.252.23	185.199.109.153	TLSv1.3	101	Applic	ation	Data				
	36 0.857984663	131.254.252.23	185.199.109.153	TLSv1.3		Applic	ation	Data				
	37 0.857947165	131.254.252.23	185.199.109.153	TLSv1.3		Applic	cation	Data,	Application Data			
	38 0.860272768	131.254.252.23	185.199.109.153	TLSv1.3	162	Applic	ation	Data				
	39 0.864607086	131.254.252.23	185.199.109.153	TLSv1.3		Applic	cation	Data				
	40 0.867657307	185.199.109.153	131,254,252,23	TCP	66	443	42578	[ACK]	Seg=777 Ack=1256	Win=145408 Le	n=0 TSval=25970433	330 TS
	41 0.877029712	185,199,109,153	131,254,252,23	TCP	66	443	42578	ACK	Seg=777 Ack=1396	Win=146432 Le	n=0 TSval=25970433	338 T
	42 0.877029938	185,199,109,153	131,254,252,23	TCP	66	443	42578	ACK	Seg=777 Ack=1623	Win=147456 Le	n=0 TSval=25970433	338 T
	43 0,879160357	185,199,109,153	131,254,252,23	TCP							n=0 TSval=25970433	
	44 0,883225268	185,199,109,153	131,254,252,23	TCP							n=0 TSval=25970433	
	45 0,959652163	185,199,109,153	131,254,252,23	TLSv1.3			ation		bed-ill Her-riss	H211-2-11-100 E0	11-0 10101-2001040	.40 1
	46 0,959652475	185,199,109,153	131,254,252,23	TLSv1.3			ation					
	47 0.959746916	131.254.252.23	185.199.109.153	TCP	66	42570	442	CACK1	Sen=1755 Ack=100	0 Min=64120 Lo	n=0 TSval=1731066	000 TI
	48 0.969032125	131.254.252.23	185.199.109.153	TLSv1.3			ation		364-1100 MCK-100	0 WIII-04120 F6	11-0 13vat-1/31000	105 1
	49 0.963572039	185.199.109.153	131.254.252.23	TLSV1.3								
	50 0.963712830	131.254.252.23					ation					
	50 0.963/12830	131.254.252.23	185.199.109.153	TLSv1.3	136	Applic	ation	Data,	Application Data			
•												
		on wire (1040 bits		00 10 db ff						••••• (• k•••••		
E1	thernet II, Src: 1	intel 9e:e8:cd (28:a)	9:6b:9e:e8:c(0010	80 74 89 4a	40 00	40 06	89 c3	83 fe	fc 17 b9 c7	t-J0-0		
> 11	nternet Protocol V	Version 4, Src: 131.;	254,252,23, 1 0020	6d 99 a6 52	01 bb	91 cc	0c 13	4b 12		· · R · · · · · · · K · · ·		
b T)	ransmission Contro	1 Protocol, Src Por	t: 42578, Ds1 0030	01 f5 a7 dc	99 99	01 01	08 0a	67 20	fb 45 9a cb ·	E		
	ransport Laver Sec										3	
		aver: Change Cipher		61 db 7e fe						~~ · · · a · Z · · · · D		
		Change Cipher Spec								a 2 \6		
	Version: TLS									···· V··· \ ··· 3=U		
	Length: 1	T'T (0V0003)			00 OU	03 50	70,11	00 33	1 30 32 29 14 -			
	Change Cipher	Coop Massage	0000	10 10					у			
			to Destantia									
•	ILSV1.3 Record L	ayer: Application Da	ata Protocól:									

ts,proto,src_ip,dst_ip,dst_port,fwd_packets,bwd_packets,fwd_bytes,bwd_bytes
1730800143,TCP,131.254.252.23,216.58.213.78,443,33,41,5988,1950

Ínría

Approach

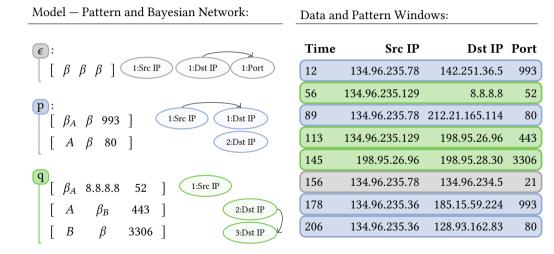
State of the part

- Several approaches have been tried to generate network flow records or pcap files: VAE, GAN, LLMs
- The results are not very good:
 - A significant portion of generated data do not comply with network protocols
 - Generated data do not reflect the diversity of the original data

Our approach: a three-step generation

- FlowChronicle (published): a network flow generator
- TADAM (under review): a packet header generator
- Starting work with LLMs: full packet generator

FlowChronicle


Ínría

Pattern language

- Hybrid approach: pattern detection and statistical modeling
- Pattern detection: find temporal patterns of flows
 - DNS query then HTTP(S)
 - IMAP request then HTTP(S)
- Some values are fixed in the patterns
- The values that are not fixed are modelized with a Bayesian network
- These patterns are self-explanatory:
 - they can be verified by an expert
 - they can also be added manually
- This work was published recently

Ínnin

FlowChronicle

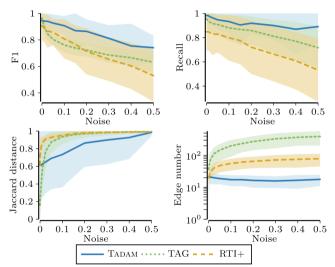
Ínnía

FlowChronicle: generation quality

	Density	CMD	PCD	EMD	JSD	Coverage	DKC	MD	Rank
	Real.	Real.	Real.	Real./Div.	Real./Div.	Div.	Comp.	Nov.	Average
	1	\downarrow	\downarrow	\downarrow	↓	↑	\downarrow	=	Ranking
Reference	(0.69)	(0.06)	(1.38)	(0.00)	(0.15)	(0.59)	(0.00)	(6.71)	-
IndependentBN	7 (0.24)	5 (0.22)	6 (2.74)	8 (0.11)	4 (0.27)	4 (0.38)	4(0.05)	4 (5.47)	5.25
SequenceBN	6 (0.30)	2(0.13)	5 (2.18)	7 (0.08)	3 (0.21)	3 (0.44)	2(0.02)	3 (5.51)	3.875
TVAE	3 (0.49)	4(0.18)	3 (1.84)	2(0.01)	5 (0.30)	5 (0.33)	6(0.07)	5 (5.17)	4.125
CTGAN	2 (0.56)	3 (0.15)	2(1.60)	3 (0.01)	2 (0.15)	2 (0.51)	8(0.11)	2 (5.70)	3.0
E-WGAN-GP	8 (0.02)	7 (0.34)	8 (3.63)	5 (0.02)	7 (0.38)	8 (0.02)	7(0.07)	6 (4.66)	7.0
NetShare	5 (0.32)	6(0.28)	1 (1.47)	6 (0.03)	6 (0.36)	6 (0.22)	5 (0.05)	7 (3.82)	5.25
Transformer	1 (0.62)	8 (0.78)	7 (3.62)	1 (0.00)	8 (0.55)	7 (0.03)	3 (0.05)	8 (3.75)	5.375
FlowChronicle	4 (0.41)	1 (0.03)	4 (2.06)	4 (0.02)	1 (0.10)	1 (0.59)	1 (0.02)	1 (5.87)	2.125

TADAM

Learning


- Network protocols typically rely on finite state automata
- We propose to learn probabilistic timed automata to capture packet header sequences
- Existing automata learners from observations cannot handle noisy data
- We propose TADAM: a robust timed automata learner
- Two main contributions:
 - A compression-based score to avoid overfitting
 - An explicit modelization of the noise

Experimental results

- TADAM is far more robust to noise
- TADAM learns smaller models
- TADAM has better performance on real-world classification and anomaly detection tasks

TADAM: experiments

Learner	AU-ROC	\mathbf{TPR}	\mathbf{FPR}	$\mathbf{F1}$
TADAM	0.982	0.998	0.025	0.705
TAG	0.891	1	0.142	0.298
RTI+	0.790	1	0.292	0.171
HMM	0.608	0.640	0.085	0.288

Table 3: Anomaly detection performance on HDFS_v1 dataset. We report the TPR, FPR and F1-score for the threshold maximizing TPR-FPR.

Header generation

Generation from automata

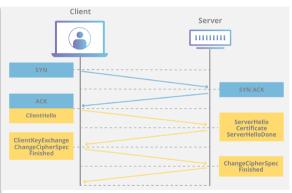
- · With a probabilistic automata, we can easily sample packet headers sequences
- But generation must be parameterized according to a network flow record!
- For example: total size = 5200 bytes, 5 forward packets, 8 backward packets
- This can be done easily by representing the constraints by an automaton and computing the intersection between the protocol automaton and the constraints automaton

Payload generation

From headers sequence to packets

- Most data can be filled automatically (ACK number, checksum, etc.)
- Some payloads are encrypted, so we can generate random data that are indistinguishable
- For plain-text payloads, we propose to replay them or to use LLMs
- We did some preliminary experiments with GPT-4 to generate realistic payloads, but conditioning the generation is not reliable and it is slow

Ínría


Payload generation: example

Example: TLS handshake generation

It must be:

- Consistent with the packet size generated by TADAM: the length of packet is highly influenced by the signature length of the cipher suite
- Consistent with the protocol:
 - The server name should be consistent in ClientHello and ServerHello
 - The cipher used in ServerHello should be available in ClientHello
 - Different OS use different ciphers

Not an easy task for LLMs!

The four packets (in yellow) of a TLS handshake

LLMs for system data generation

System data generation

- Our next goal will be to generate system data, i.e., logs
- We propose to proceed with a two-step approach:
 - generate a provenance graph (graph of interactions between system entities and resources)
 - generate logs from such interactions

Log parsing and generation

- Log parsing is notoriously complex
- Each application has its own semi-structured format, and it tends to change
- Log parsing and generation could be a perfect application for LLMs
- On top of well-known formats that could be directly generated, more obscure formats could be learned with few-shot learning or fine tuning

Conclusion

The need of data

- Good quality data is of utmost importance for security system evaluation
- One way to achieve such quality is through generative AI

Current and future work

- "Classical" AI can yield better quality generation for low-dimension feature spaces, on top of being explainable
 - \rightarrow adapted to intermediate data structure generation
- LLMs is certainly a key to generating actual data, i.e., packet payload and logs \rightarrow conditioning their generation remains a challenge