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a The issue of data in security
lreeia—

Why do we need data?
= For evaluating security measures, most notably detection

= For using machine learning in cybersecurity

Current state of datasets
= Public datasets are typically run in testbed with no real users
= They can suffer from mislabelling, network and attack configurations errors, etc.
= We cannot access private data due to confidentiality and privacy reasons

= we cannot confidently evaluate anomaly-based detection because of the dubious quality and
the lack of realistic users

v

My research project: use Al to generate security data
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- Security data generation
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Goals
= Generation of network data (pcap files) and system data (logs)
= Temporal consistency and between network and system
= In-depth data quality evaluation
= Minimal expert’s input

Ongoing work: pipeline prototype
= We focus on benign network data
= Input data: pcap file
= Qutput data: a pcap file statistically similar to the input data
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- Network data example
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- Approach

Creeia—~

FlowChronicle

State of the part v
= Several approaches have been tried to generate network flow Network flows

records or pcap files: VAE, GAN, LLMs
= The results are not very good:
= A significant portion of generated data do not comply with TADAM
network protocols v

= Generated data do not reflect the diversity of the original data
4 Packets header

Our approach: a three-step generation v
= FlowChronicle (published): a network flow generator LLM
= TADAM (under review): a packet header generator y
= Starting work with LLMs: full packet generator Network packets

’ with payload
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Lonae FlowChronicle
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Pattern language

= Hybrid approach: pattern detection and statistical modeling
= Pattern detection: find temporal patterns of flows

= DNS query then HTTP(S)

= IMAP request then HTTP(S)
= Some values are fixed in the patterns

= The values that are not fixed are modelized with a Bayesian network
= These patterns are self-explanatory:

= they can be verified by an expert
= they can also be added manually

= This work was published recently
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Lorade FlowChronicle
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, FlowChronicle: generation quality

Density | CMD PCD EMD JSD Coverage | DKC MD Rank
Real. Real. Real. | Real/Div. | Real./Div. Div. Comp. Now. Average
T | | | | 1 ! = Ranking
Reference (0.69)  (0.06) (L.39) (0.00) (0.15) (0.59) (0.00)  (6.71) -
IndependentBN | 7 (0.24) 5(0.22) 6(2.74) 8(0.11) 4(0.27)  4(0.38)  4(0.05) 4 (5.47) 5.25
SequenceBN | 6(0.30) 2(0.13) 5(2.18) 7(0.08)  3(0.21)  3(0.44) 2(0.02) 3(551) 3.875
TVAE 3(049) 4(0.18) 3(1.84) 2(0.01)  5(0.30)  5(0.33)  6(0.07) 5(5.17) 4.125
CTGAN 2(0.56) 3(0.15) 2(1.60) 3(0.01) 2(0.15)  2(0.51)  8(0.11) 2(5.70) 3.0
E-WGAN-GP | 8(0.02) 7(0.34) 8(3.63) 5(0.02) 7(038)  8(0.02) 7(0.07) 6 (4.66) 7.0
NetShare 5(032) 6(0.28) 1(L47) 6(0.03) 6(0.36)  6(0.22)  5(0.05) 7 (3.82) 5.25
Transformer | 1(0.62) 8(0.78) 7(3.62) 1(0.00) 8(055  7(0.03)  3(0.05 8(3.75) 5.375
FlowChronicle | 4(0.41) 1(0.03) 4(206) 4(0.02) 1(0.10) 1(0.59) 1(0.02) 1(5.87) 2.125
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Lostn TADAM
Learning
= Network protocols typically rely on finite state automata
= We propose to learn probabilistic timed automata to capture packet header sequences
= Existing automata learners from observations cannot handle noisy data
= We propose TADAM: a robust timed automata learner

= Two main contributions:

= A compression-based score to avoid overfitting
= An explicit modelization of the noise

Experimental results
= TADAM is far more robust to noise
= TADAM learns smaller models
= TADAM has better performance on real-world classification and anomaly detection tasks

v
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- TADAM: experiments
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- Header generation
&ZW g

Generation from automata
= With a probabilistic automata, we can easily sample packet headers sequences
= But generation must be parameterized according to a network flow record!
= For example: total size = 5200 bytes, 5 forward packets, 8 backward packets

= This can be done easily by representing the constraints by an automaton and computing
the intersection between the protocol automaton and the constraints automaton
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4 Payload generation

From headers sequence to packets
= Most data can be filled automatically (ACK number, checksum, etc.)
= Some payloads are encrypted, so we can generate random data that are indistinguishable
= For plain-text payloads, we propose to replay them or to use LLMs

= We did some preliminary experiments with GPT-4 to generate realistic payloads, but
conditioning the generation is not reliable and it is slow
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- Payload generation: example
lnzia—

Example: TLS handshake generation Client

Server

It must be: @)

= Consistent with the packet size generated
by TADAM: the length of packet is highly _\
influenced by the signature length of the | ...~ BT

cipher suite *e—//
= Consistent with the protocol: | | - G
= The server name should be consistent in e
ClientHello and ServerHello | | . ChangeCipherspec
= The cipher used in ServerHello shoudbe f |
available in ClientHello .
= Different OS use different ciphers The four packets (in yellow) of a TLS

Not an easy task for LLMs! handshake

Generative Al for assessing network intrusion detection systems Introduction Inria/AISI Workshop November 6th, 2024 13 /15



, LLMs for system data generation

re
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System data generation
= Our next goal will be to generate system data, i.e., logs

= We propose to proceed with a two-step approach:
= generate a provenance graph (graph of interactions between system entities and resources)
= generate logs from such interactions

Log parsing and generation
= Log parsing is notoriously complex
= Each application has its own semi-structured format, and it tends to change
= Log parsing and generation could be a perfect application for LLMs

= On top of well-known formats that could be directly generated, more obscure formats
could be learned with few-shot learning or fine tuning
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s Conclusion
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The need of data
= Good quality data is of utmost importance for security system evaluation

= One way to achieve such quality is through generative Al

Current and future work
= "Classical" Al can yield better quality generation for low-dimension feature spaces, on top
of being explainable
— adapted to intermediate data structure generation
= LLMs is certainly a key to generating actual data, i.e., packet payload and logs
— conditioning their generation remains a challenge
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