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Context

Imagine a user wants to book a dinner online. A menu is a tuple of
values of three different attributes:

Main course (M) meat or fish

Wine (W) red or white

Cheese (C) goat or Camembert

During her choice, we would like to make a recommendation
We have access to a set of previously menus sold by the website
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Example

Sales history
meat − red − goat
meat − red − goat
meat − red − Cam.
meat − red − Cam.
meat − red − Cam.
meat − white − goat
meat − white − Cam.
fish − white − goat
fish − white − Cam.

Meat more common than fish: meat is
probably preferred to fish

meat > fish

For meat dinner, red wine seems preferred to
white wine

meat : red > white

We can deduce information about user preferences
!
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Hélène Fargier, Pierre-François Gimenez and Jérôme Mengin AAAI’18 – Learning Lexicographic Preference Trees from Positive Examples



3/19

Introduction
Lexicographic Preference Trees

Experiments

Context and problematic
Probabilistic model

Example

Sales history
meat − red − goat
meat − red − goat
meat − red − Cam.
meat − red − Cam.
meat − red − Cam.
meat − white − goat
meat − white − Cam.
fish − white − goat
fish − white − Cam.

Meat more common than fish: meat is
probably preferred to fish

meat > fish
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Probabilistic model

We don’t always choose our most preferred outcome
(e.g. because of a desire of variety)

Ground idea

The more preferred an outcome is, the more often it is chosen

Probability distribution of selection p decreasing w.r.t. the
preference relation ≻: p(o) > p(o′) iff o ≻ o′

Idea not tied to any specific language
In the following: represented by lexicographic preference trees
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Lexicographic Preference Trees (LP-trees) [BCL+09]

M
meat > fish

W

meat

red > white
C

fish

goat > Cam.

C

red

Cam. > goat
C

white

goat > Cam.
W white > red

LP-tree definition [BCL+09]

Tree of attributes ordered by importance (root: most important)

Edges can be labelled by a value or not

Preferences rules associated to each node
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LP-trees semantics

M
meat > fish

M
meat > fish

W

meat

red > white

W

meat

red > white
C

fish

goat > Cam.

C

red

Cam. > goat

C

white

goat > Cam.

C

white

goat > Cam.
W white > red

We would like to compare:
meat − red − goat and fish − white − goat
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M
meat > fish

M
meat > fish

W

meat

red > white

W

meat

red > white
C

fish

goat > Cam.

C

red

Cam. > goat

C

white

goat > Cam.

C

white

goat > Cam.
W white > red

We would like to compare:
meat − red − goat ≻ fish − white − goat
Any menu with meat is preferred to any menu with fish
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M
meat > fish

M
meat > fish

W

meat

red > white

W

meat

red > white
C

fish

goat > Cam.

C

red

Cam. > goat

C

white

goat > Cam.

C

white

goat > Cam.
W white > red

We would like to compare:
meat − white − goat and meat − white − Cam.
Root node can’t decide the comparison
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LP-trees semantics

M
meat > fish

M
meat > fish

W

meat

red > white

W

meat

red > white

C

fish

goat > Cam.

C

red

Cam. > goat

C

white

goat > Cam.

C

white

goat > Cam.
W white > red

We would like to compare:
meat − white − goat and meat − white − Cam.
Among meat menus, any menu with red wine is preferred to any
menu with white wine
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Our contribution

Learning algorithms assume pairwise comparisons
[BCL+09, BCL+10, BH12, LT15, BHKG17]

Here, no pairwise comparisons but sales histories

Our contribution

An algorithm to learn a LP-tree from sales histories
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How to learn a LP-tree from a sales history ?

Sales history
meat − red − goat
meat − red − goat
meat − red − Cam.
meat − red − Cam.
meat − red − Cam.
meat − white − goat
meat − white − Cam.
fish − red − goat
fish − white − goat

?M

meat fish

meat > fish

?W
red > white

red white

C goat > Cam.

C
Cam. > goat

C

goat > Cam.

W

white > red

goat Cam.
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W 6 red 3 white
C 5 goat 4 Cam.

1. Most important attribute
= most unbalanced attribute
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M
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red white
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How to learn a LP-tree from a sales history ?

Sales history
meat − red − goat
meat − red − goat
meat − red − Cam.
meat − red − Cam.
meat − red − Cam.
meat − white − goat
meat − white − Cam.
fish − red − goat
fish − white − goat

M 7 meat 2 fish
W 6 red 3 white
C 5 goat 4 Cam.

2. Preference relation

?

M

meat fish

meat > fish

?W
red > white

red white

C goat > Cam.

C
Cam. > goat

C

goat > Cam.

W

white > red

goat Cam.
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fish − red − goat
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W 5 red 2 white
C 3 goat 4 Cam.

3. Most important attribute for meat menus

?

M

meat fish

meat > fish

?

W
red > white

red white

C goat > Cam.

C
Cam. > goat

C

goat > Cam.
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How to learn a LP-tree from a sales history ?

Sales history
meat − red − goat
meat − red − goat
meat − red − Cam.
meat − red − Cam.
meat − red − Cam.
meat − white − goat
meat − white − Cam.
fish − red − goat
fish − white − goat

W 1 red 1 white
C 2 goat 0 Cam.

4. Most important attribute for fish menus

?

M

meat fish

meat > fish

?

W
red > white

red white

C goat > Cam.

C
Cam. > goat

C

goat > Cam.

W

white > red

goat Cam.
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How to learn a LP-tree from a sales history ?

Sales history
meat − red − goat
meat − red − goat
meat − red − Cam.
meat − red − Cam.
meat − red − Cam.
meat − white − goat
meat − white − Cam.
fish − red − goat
fish − white − goat

5. No exemple in the branch fish − Cam. !

?

M

meat fish

meat > fish

?

W
red > white

red white

C goat > Cam.

C
Cam. > goat

C

goat > Cam.

W

white > red
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How to learn a LP-tree from a sales history ?

Sales history
meat − red − goat
meat − red − goat
meat − red − Cam.
meat − red − Cam.
meat − red − Cam.
meat − white − goat
meat − white − Cam.
fish − red − goat
fish − white − goat

6. Solution: one unlabelled, unconditioned edge

?

M

meat fish

meat > fish

?

W
red > white

red white

C goat > Cam.

C
Cam. > goat

C

goat > Cam.

W

white > red

goat Cam.
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How to learn a LP-tree from a sales history ?

Sales history
meat − red − goat
meat − red − goat
meat − red − Cam.
meat − red − Cam.
meat − red − Cam.
meat − white − goat
meat − white − Cam.
fish − red − goat
fish − white − goat

7. And so on

?

M

meat fish

meat > fish

?

W
red > white

red white

C goat > Cam.

C
Cam. > goat

C

goat > Cam.

W

white > red

goat Cam.
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Algorithm

Algorithm 1: LP-tree learning algorithm

Input: X , a set of outcomes H over X
Output: L the learnt k-LP-tree
Algorithm LearnLPTree(X ,H)

1 L ← unlabelled root node
2 while L contains some unlabelled node N do
3 (X, table)← ChooseAttributes(N)
4 label N with attributes X and CPT table
5 L← GenerateLabels(N,X)
6 for each l ∈ L do add new unlabelled node to L, attached

to N with edge labelled with l

7 return L
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Properties

Time complexity

For n attributes and a sales history H, the time complexity is:

O(n2|H|2)

Property 1

This algorithm converges to the target LP-tree as the sample size tends
to infinity

Property 2

This algorithm finds the most probable linear LP-tree
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Experiments on generated data: protocol

Experimental protocol

LP-trees are randomly generated

Sales histories are drawn from a geometric distribution p

LP-trees are learnt from the sales histories

Learnt LP-trees are compared with hidden LP-trees

Original LP-tree

Sales history
generate with p

Learnt LP-tree

learn

ranking loss
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Experimental evaluation

Items in the sales history are probably ranked high in user preferences
A good LP-tree should rank high the items of the sales history

Evaluation of the LP-tree learnt

Induction principle: minimize mean rank of items in the sales history

Ranking loss = normalized difference of mean rank of items in the
learnt LP-tree and the target LP-tree
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Experiments on generated data: results

Results

Quick convergence w.r.t. sample size: ranking loss seems inversely
proportional to the sample size

Linear LP-tree progression slows down

Sustainable CPU time (∼ 1s)
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Recommendation in car interactive configuration: dataset

Dataset

Genuine sales history from Renault (car manufacturer)

48 attributes (mostly binary)

27088 items in sales history

From this sales history, we learn a LP-tree
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Recommendation in car interactive configuration: protocol

Interactive configuration

1 The user selects freely an attribute

2 The recommender system recommends a value

3 The user accepts the recommended value or chooses another one

4 Repeat until all attributes have a value

Protocol

For each car in the test set, we simulate a configuration session

Recommendation precision: ratio of recommendations that would
have been accepted

Hélène Fargier, Pierre-François Gimenez and Jérôme Mengin AAAI’18 – Learning Lexicographic Preference Trees from Positive Examples



18/19

Introduction
Lexicographic Preference Trees

Experiments

Experiments on generated data
Application to recommendation in car interactive configuration

Recommendation in car interactive configuration: results

Results

Mean rank correlated with measured precision

High precision (87% accepted recommendations)
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Conclusion

Contributions

Ground idea: preferred outcomes are more probably picked

Framework and algorithm to learn LP-trees from positives
examples

Effective learning of randomly generated LP-trees

Good recommendation precision on a real-world application

Perspectives

Sample complexity in PAC settings

Extension to other preference languages (e.g. CP-nets)
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Backup slides

Linear LP-trees

A linear LP-tree is a LP-tree with only unlabelled edges (i.e. a linear tree)
It is the classical “lexicographic order”.

M
meat > fish

W
red > white

C
Cam. > goat
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k-LP-trees

k-LP-trees may have at most k attributes per node (classical LP-trees are
1-LP-trees)
It can represent preference order where classical LP-trees can’t

MW meat/red > fish/white > fish/red > meat/white

C

goat > Cam.

C

goat > Cam.

C

Cam. > goat

C

goat > Cam.

meat/red

fish/white

fish/red meat/white
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Backup slides

LP-tree pruning

The LP-tree learnt may overfit (learn by heart) the data, which decrease
its generalization power
The pruning reduces overfitting by simplifying the LP-tree

Before pruning

M
meat > fish

W

meat

red > white
C

fish

goat > Cam.

C

red

Cam. > goat C

white

goat > Cam.

W

goat

white > red

W

Cam.

white > red
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LP-tree pruning

The LP-tree learnt may overfit (learn by heart) the data, which decrease
its generalization power
The pruning reduces overfitting by simplifying the LP-tree

After pruning

M
meat > fish

W

meat

red > white
C

fish

goat > Cam.

CCam. > goat W

white > red
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Backup slides

Clustering

We divide the sales history into homogeneous clusters
We learn a LP-tree for each cluster

Sales history

Cluster 1 . . . Cluster n

LP-tree 1 . . . LP-tree n

Then, to make a recommendation given a partial assignment u, we use
the LP-tree whose cluster centre is closest (Hamming distance) to u
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