
TADAM: Learning Timed Automata from Noisy Observations
Lénäıg Cornanguer1, Pierre-François Gimenez2

1CISPA Helmholtz Center for Information Security, 2Inria
lenaig.cornanguer@cispa.de, pierre-francois.gimenez@inria.fr SDM’25

Context: Automata Mining

Automata are:
▶ Human-understandable
▶ Useful for monitoring, model checking, data generation. . .
▶ A natural fit for systems relying on finite-state machines

Probabilistic Real-Time Automata Language

Probabilistic helpful for identifying typical behavior; crucial for
anomaly detection and data generation

Real-time modelize delays between events as distributions

We observe events: (symbol, delay)

LISTEN
SYN
SENT

ESTAB-
LISHED

CLOSE

SYN sent
N (0, 0), p = 1 SYN sent

N (3000, 5), p = 0.1

SYN-ACK received
N (10, 5), p = 0.9

message received or sent
N (800, 200), p = 0.9

RST received
N (5000, 400)

p = 0.1

Research Question

▶ We are interested in passive learning from positive
examples only

▶ Limited measurement accuracy, configuration error,
non-deterministic behavior can lead to noisy
observations

▶ Related work cannot handle noisy observations

Research question: how to learn probabilistic real-time
automata from noisy observations?

Noise Model

We propose an explicit modelization of the noise with:

▶ deletion of an event
▶ insertion of an event

▶ transposition of two events
▶ symbol repetition

Model Encoding

MDL principle: the best model compresses the data the most

L(A) =LN(|Q|) + LN(|Σ|) +
∑
e∈E

(
2 log2(|Q|) + log2(|Σ|)

+ LN(⌊µe⌋) + LN(⌊σ2
e⌋)

)
+ 2 log2(|Q|)

It encodes: the location, the alphabet, the initial and accepting
locations and the transitions

Data Encoding

We could encode data according to their probability but noisy
data would have null probability!
Data encoding as a two-step process:

1. Correct non-accepted words to remove the noise

2. Encode the corrected data and their correction

For each noise type, there is a correction operation (deletion →
add, etc.). Overall cost of the correction is minimized by a
variation of the Levenshtein distance algorithm

Elementary Automaton Operations

Learning is based on three elementary operations:
▶ Location merge (model cost ↘, data cost ↗)
▶ Location split (model cost ↗, data cost ↘)
▶ Subpart deletion (model cost ↘, data cost ↗)

TADAM Learning Algorithm

Data: Input sample of timed sequences D
1 Â ← MarkovInit(D)
2 repeat

3 candidates ← {transform(Â, operation, target)}
4 A′← arg minA∈candidates L(A) + L(D|A)
5 gain← L(Â) + L(D|Â)− L(A′)− L(D|A′)
6 if gain > 0 then Â ← A′ ;
7 until gain ≤ 0;

8 return Â

Noise Robustness on Synthetic Data

0 0.1 0.2 0.3 0.4 0.5
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95

1

Noise

F
1

0 0.1 0.2 0.3 0.4 0.5
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95

1

Noise

R
ec
al
l

0 0.1 0.2 0.3 0.4 0.5
100

101

102

Noise

E
dg
e
nu
m
b
er

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Noise

Ja
cc
ar
d
di
st
an
ce

TADAM
TAG
RTI+

▶ TADAM is more robust to noise
▶ It learns smaller models that are easier to understand

Anomaly Detection in System Logs

Learner AUROC TPR FPR F1
TADAM 0.982 0.998 0.025 0.705

TAG 0.891 1 0.142 0.298
RTI+ 0.790 1 0.292 0.171
HMM 0.608 0.640 0.085 0.288

▶ TADAM has very high detection rate and few false
alarms

▶ TAG and RTI+ overfit on training data and do not
generalize properly

▶ HMM is not expressive enough

Perspectives

▶ Extension to more complex
automata languages:
▶ timer automata
▶ counter-based automata
▶ pushdown automata

▶ Application to reverse
engineering of undocumented
network protocols

Test it!

Fos-R/TADAM
pip install

tadam-learner

