TADAM: Learning Timed Automata from Noisy Observations Lénaïg Cornanguer¹, Pierre-François Gimenez² ¹CISPA Helmholtz Center for Information Security, ²Inria Ienaig.cornanguer@cispa.de, pierre-francois.gimenez@inria.fr

Context: Automata Mining

Automata are:

- Human-understandable
- Useful for monitoring, model checking, data generation...
- A natural fit for systems relying on finite-state machines

Probabilistic Real-Time Automata Language

Probabilistic helpful for identifying typical behavior; crucial for anomaly detection and data generation
Real-time modelize delays between events as distributions

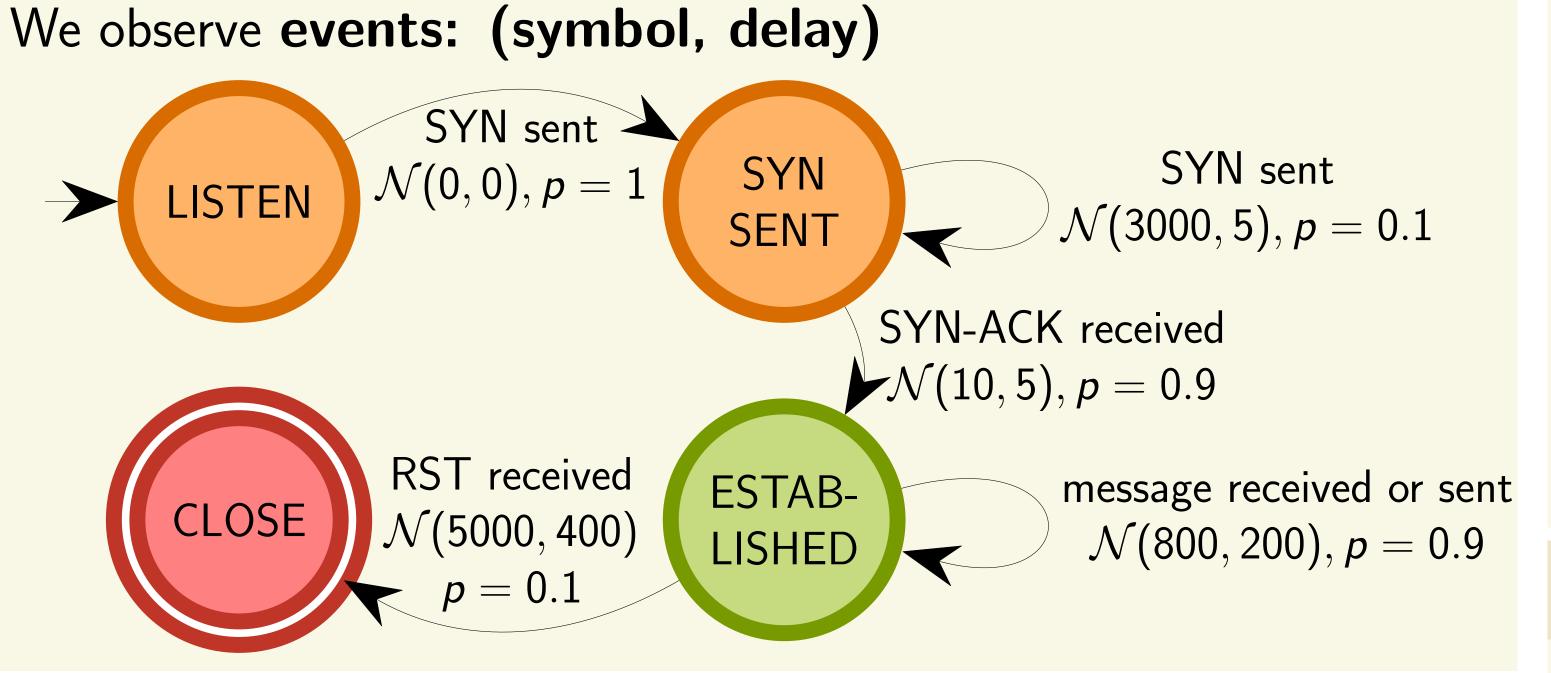
Model Encoding

MDL principle: the best model compresses the data the most
$$\begin{split} \mathcal{L}(\mathcal{A}) = \mathcal{L}_{\mathbb{N}}(|\mathcal{Q}|) + \mathcal{L}_{\mathbb{N}}(|\Sigma|) + \sum_{e \in \mathcal{E}} \left(2\log_2(|\mathcal{Q}|) + \log_2(|\Sigma|) + \mathcal{L}_{\mathbb{N}}(\lfloor \mu_e \rfloor) + \mathcal{L}_{\mathbb{N}}(\lfloor \sigma_e^2 \rfloor) \right) + 2\log_2(|\mathcal{Q}|) \end{split}$$

It encodes: the location, the alphabet, the initial and accepting locations and the transitions

Data Encoding

We could encode data according to their probability but **noisy data would have null probability**! Data encoding as a two-step process:



Research Question

- We are interested in passive learning from positive examples only
- Limited measurement accuracy, configuration error, non-deterministic behavior can lead to **noisy observations**
- Related work cannot handle noisy observations

- 1. Correct non-accepted words to remove the noise
- 2. Encode the corrected data and their correction

For each noise type, there is a correction operation (deletion \rightarrow add, etc.). Overall cost of the correction is minimized by a variation of the Levenshtein distance algorithm

Elementary Automaton Operations

Learning is based on three elementary operations:

- ► Location merge (model cost \, data cost \)
- ► Location split (model cost ↗, data cost ↘)
- **Subpart deletion** (model cost \searrow , data cost \nearrow)

TADAM Learning Algorithm

Data: Input sample of timed sequences \mathcal{D} 1 $\widehat{\mathcal{A}} \leftarrow \mathsf{MarkovInit}(\mathcal{D})$

Research question: how to learn probabilistic real-time automata from noisy observations?

Noise Model

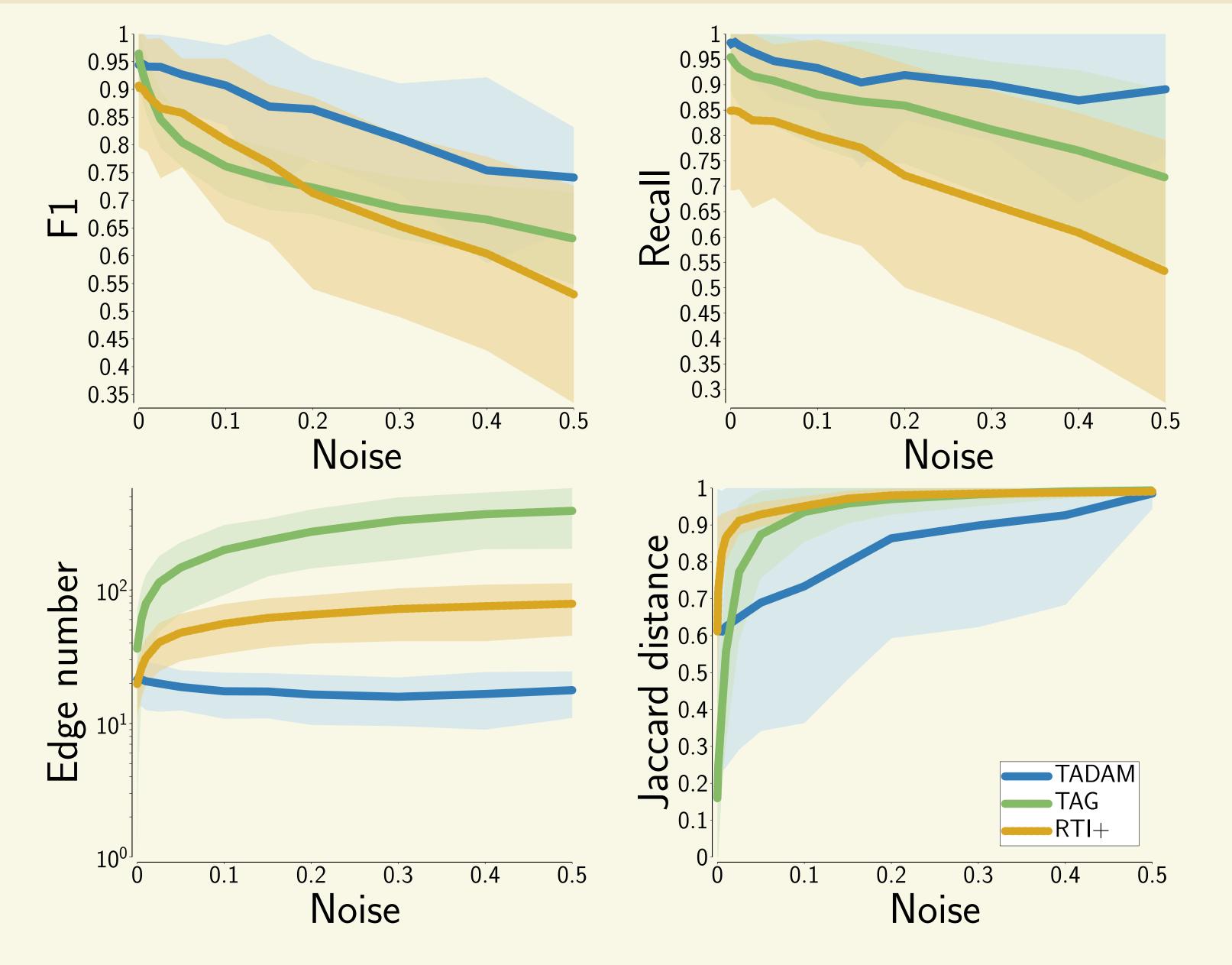
We propose an explicit modelization of the noise with:

- deletion of an event
- transposition of two events
- insertion of an event
- symbol repetition

2 repeat

3 $\begin{vmatrix} candidates \leftarrow \{ transform(\widehat{\mathcal{A}}, operation, target) \} \\ 4 & \mathcal{A}' \leftarrow arg \min_{\mathcal{A} \in candidates} \mathcal{L}(\mathcal{A}) + \mathcal{L}(\mathcal{D}|\mathcal{A}) \\ 5 & gain \leftarrow \mathcal{L}(\widehat{\mathcal{A}}) + \mathcal{L}(\mathcal{D}|\widehat{\mathcal{A}}) - \mathcal{L}(\mathcal{A}') - \mathcal{L}(\mathcal{D}|\mathcal{A}') \\ 6 & \text{if } gain > 0 \text{ then } \widehat{\mathcal{A}} \leftarrow \mathcal{A}' ; \\ 7 \text{ until } gain \leq 0; \\ 8 \text{ return } \widehat{\mathcal{A}} \end{vmatrix}$

Noise Robustness on Synthetic Data



Anomaly Detection in System Logs

Learner	AUROC	TPR	FPR	F1
TADAM	0.982	0.998	0.025	0.705
TAG	0.891	1	0.142	0.298
RTI+	0.790	1	0.292	0.171
HMM	0.608	0.640	0.085	0.288

TADAM has very high detection rate and few false alarms

- TADAM is more robust to noise
- It learns smaller models that are easier to understand

TAG and RTI+ overfit on training data and do not generalize properly
 HMM is not expressive enough

Perspectives

Extension to more complex automata languages:

 timer automata
 counter-based automata
 pushdown automata

 Application to reverse engineering of undocumented network protocols

