#### TADAM: Learning Timed Automata from Noisy Observations

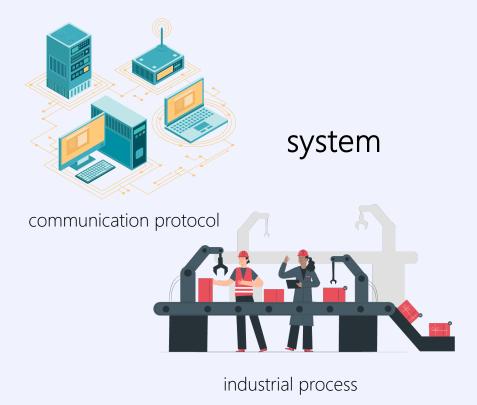
#### Lénaïg Cornanguer, Pierre-François Gimenez (equal contribution)

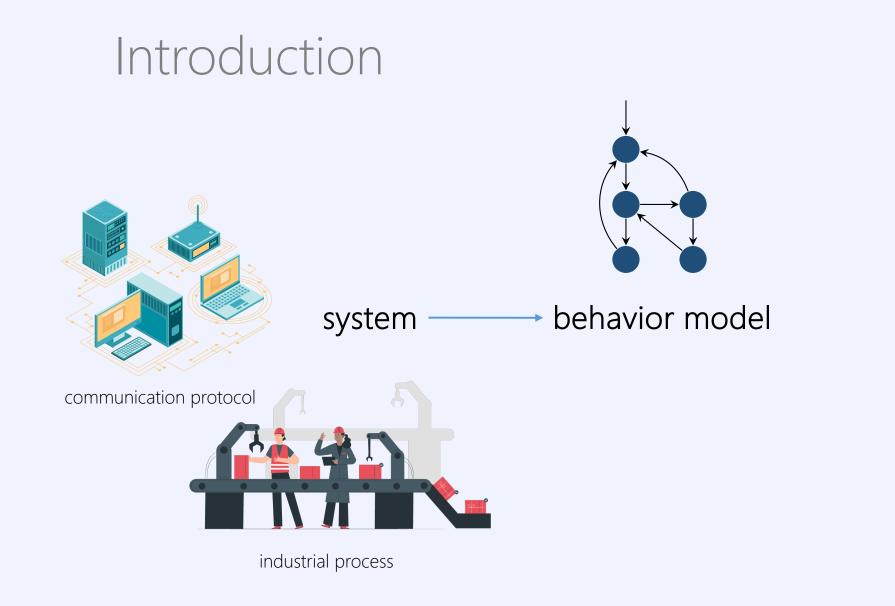


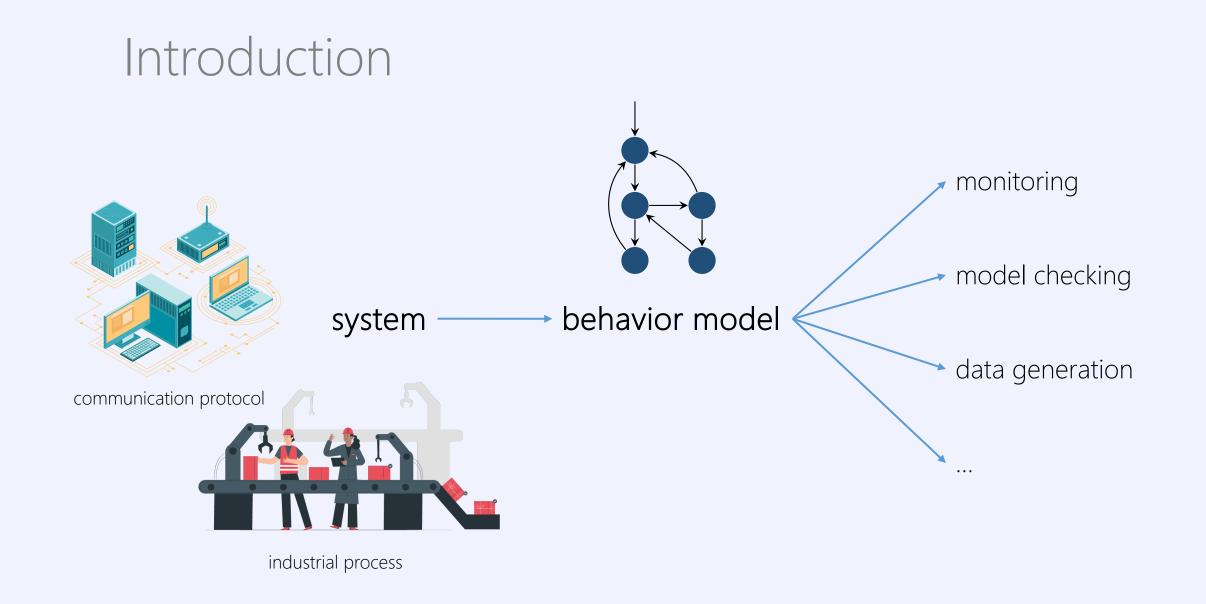




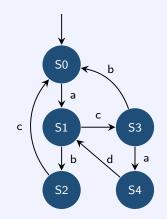








# Behavior model formalism



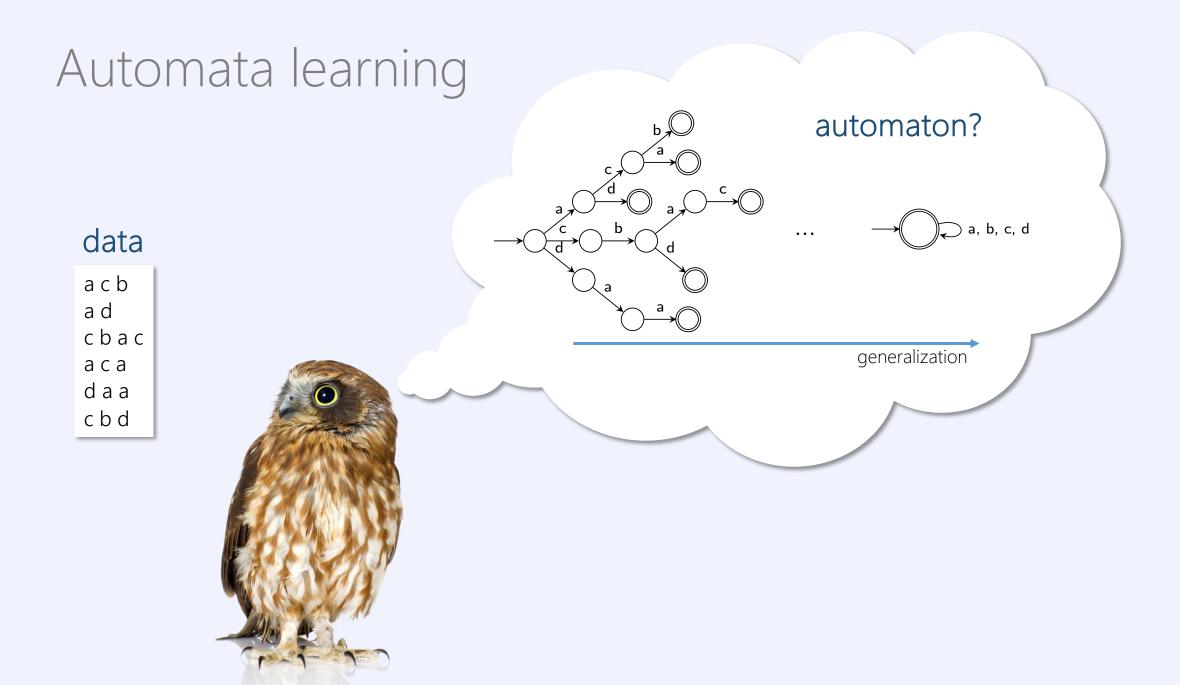
#### Automata formalism

Finite state automata (FSA)

#### Natural formalism for discrete event system (DES) modeling

Human-understandable representation of the behavior of a system

Based on a mathematical formalism with extensive literature and with software support



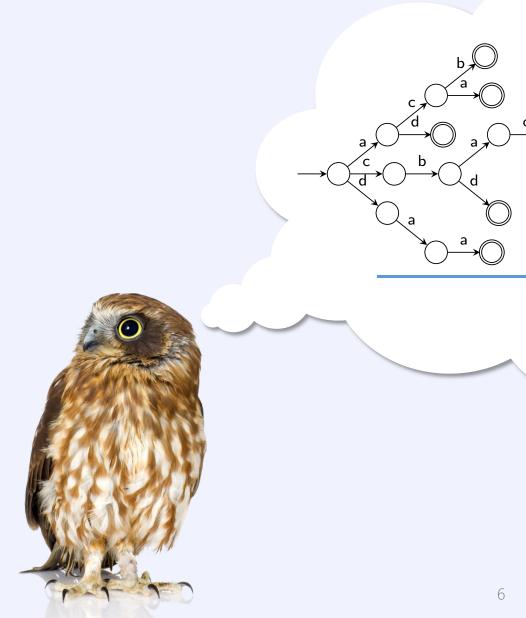
# Automata learning

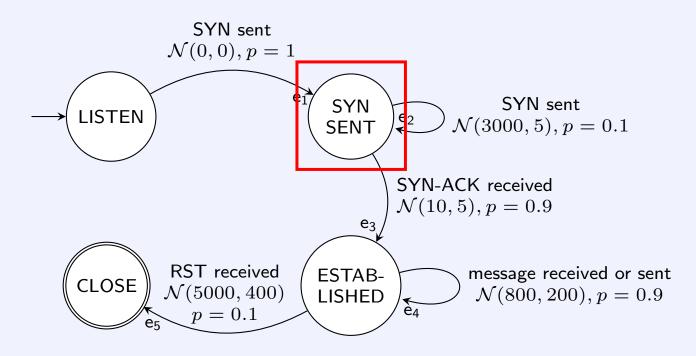


limited mesurement accuracy, probe configuration error

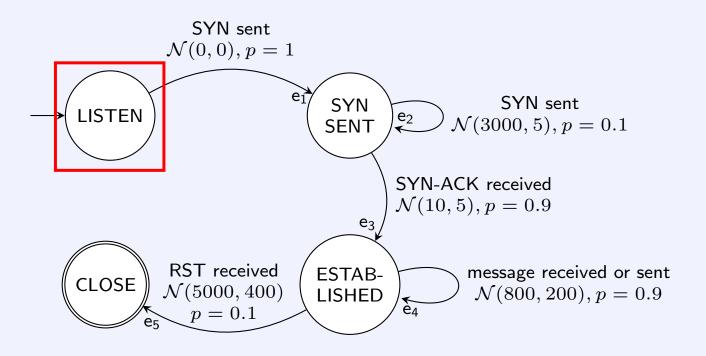
...

noisy data a c b a d c b a c a c a d a a c b d

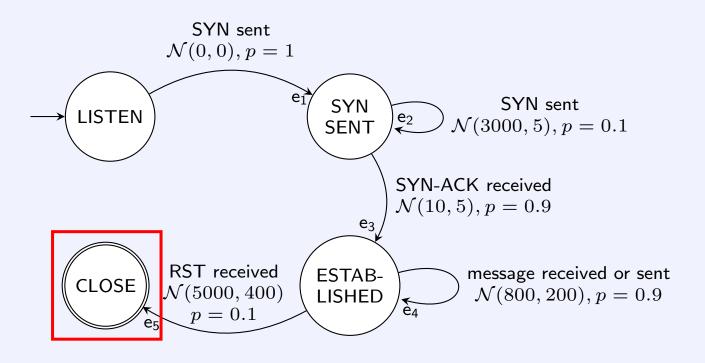




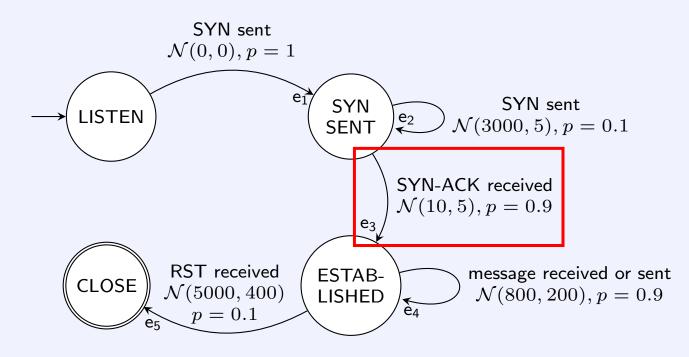
location  $q \in \mathcal{Q}$ 



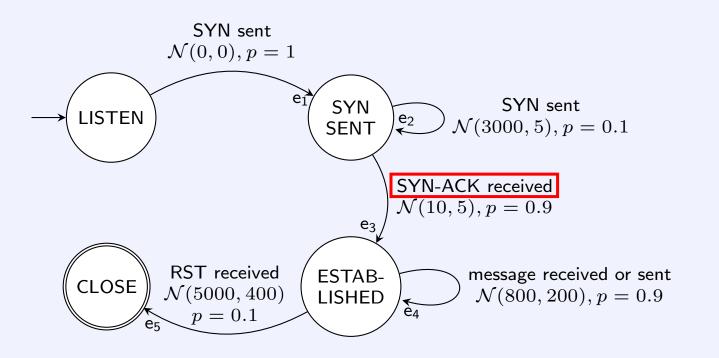
initial location



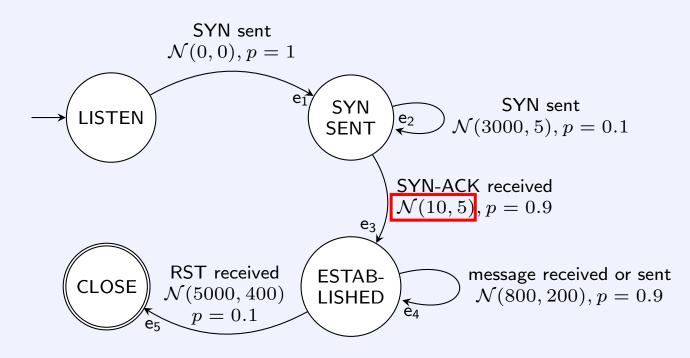
final location



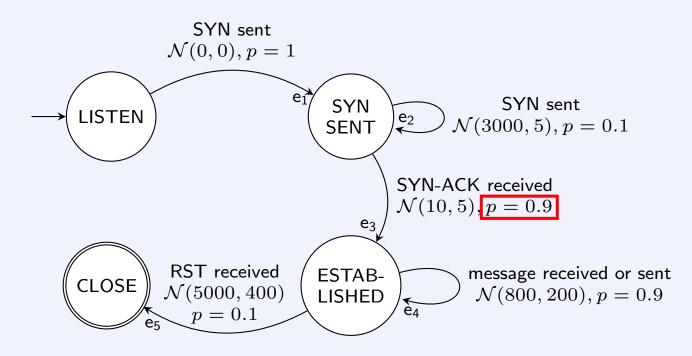
transition  $e \in \mathcal{E}$ 



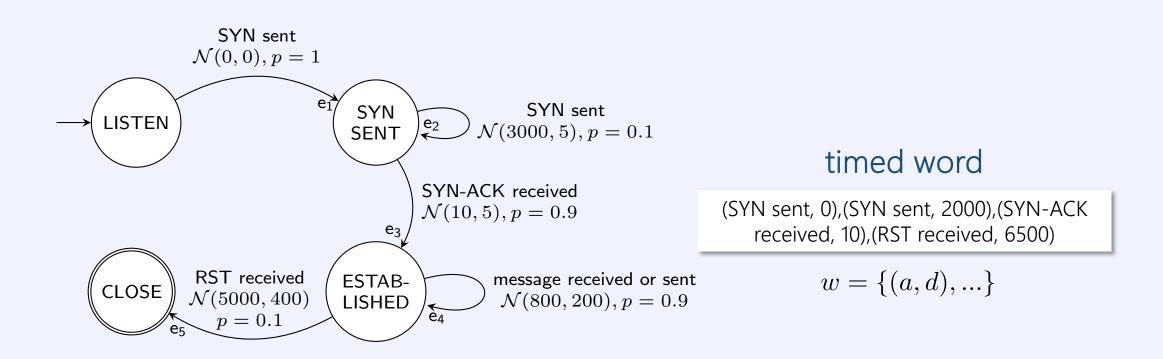
symbol  $a \in \Sigma$ 

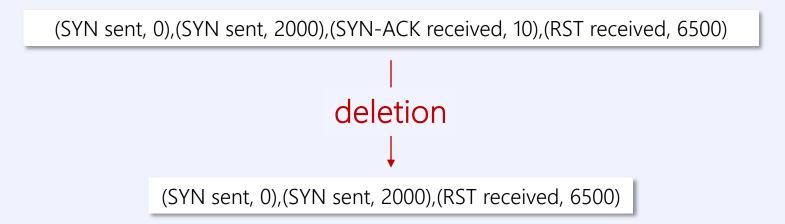


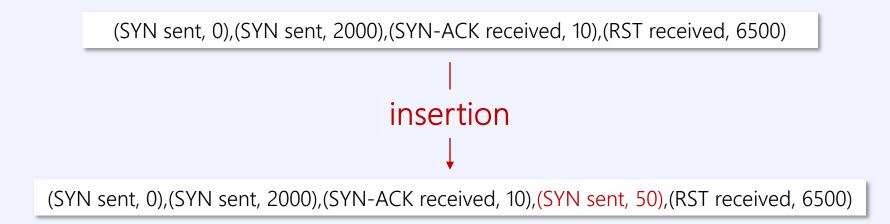
delay distribution  $\mathcal{N}(\mu,\sigma)$ 

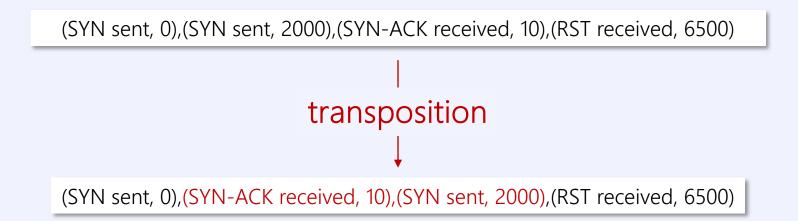


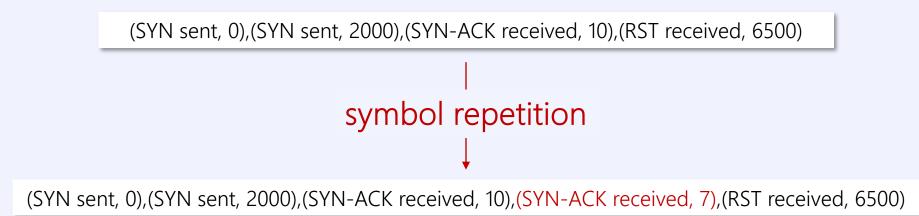
transition probability p









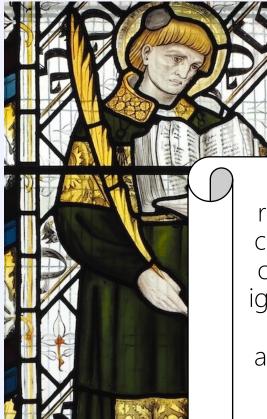


### Question



# How to learn timed automata from noisy timed words?

### Occam's razor



#### A group of hackers remotely accessed your car's onboard computer overnight, disabling the ignition system as part of a sophisticated cyberattack targeting random individuals to create chaos.

#### Why won't my car start?

Your car battery is dead.

### Occam's razor

The **simplest** model that fits the data is usually the correct one



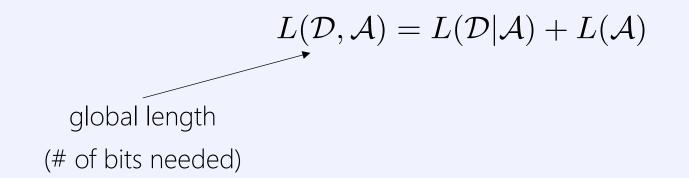
# MDL principle

Two-part description length

 $L(\mathcal{D}, \mathcal{A}) = L(\mathcal{D}|\mathcal{A}) + L(\mathcal{A})$ 

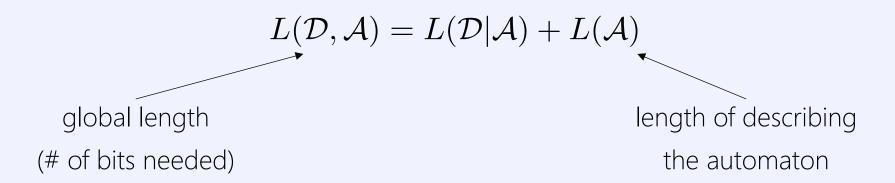
# MDL principle

Two-part description length



# MDL principle

Two-part description length



#### MDL principle Two-part description length $L(\mathcal{D}, \mathcal{A}) = L(\mathcal{D}|\mathcal{A}) + L(\mathcal{A})$ global length length of describing the length of describing (# of bits needed) data encoded with the automaton the automaton

#### MDL principle Two-part description length $L(\mathcal{D}, \mathcal{A}) = L(\mathcal{D}|\mathcal{A}) + L(\mathcal{A})$ global length length of describing the length of describing (# of bits needed) data encoded with the automaton the automaton

 $\begin{array}{l} \text{Minimum Description Length} \\ \text{principle} \\ \mathcal{A}^* = \operatorname*{argmin}_{\mathcal{A} \in \boldsymbol{\mathcal{A}}} L(\mathcal{D}|\mathcal{A}) + L(\mathcal{A}) \\ \end{array}$ 

 $L(\mathcal{A}) =$ 

Locations

 $L(\mathcal{A}) = L_{\mathbb{N}}(|\mathcal{Q}|)$ 

- Locations
- Alphabet

 $L(\mathcal{A}) = L_{\mathbb{N}}(|\mathcal{Q}|) + L_{\mathbb{N}}(|\Sigma|)$ 

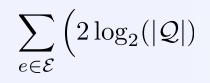
- Locations
- Alphabet
- Initial and accepting locations

 $L(\mathcal{A}) = L_{\mathbb{N}}(|\mathcal{Q}|) + L_{\mathbb{N}}(|\Sigma|) + 2\log_2(|\mathcal{Q}|) +$ 

- Locations
- Alphabet
- Initial and accepting locations
- For each transition:



- Locations
- Alphabet
- Initial and accepting locations
- For each transition:
  - Source and destination locations



- Locations
- Alphabet
- Initial and accepting locations
- For each transition:
  - Source and destination locations
  - Symbol

$$\sum_{e \in \mathcal{E}} \left( 2\log_2(|\mathcal{Q}|) + \log_2(|\Sigma|) + \log_2(|\Sigma|) \right)$$

- Locations
- Alphabet
- Initial and accepting locations
- For each transition:
  - Source and destination locations
  - Symbol
  - Guards' normal distributions parameters

$$\sum_{e \in \mathcal{E}} \left( 2\log_2(|\mathcal{Q}|) + \log_2(|\Sigma|) + \log_2(|\Sigma|) \right)$$

$$L_{\mathbb{N}}(\lfloor \mu_e \rfloor) + L_{\mathbb{N}}(\lfloor \sigma_e^2 \rfloor)$$

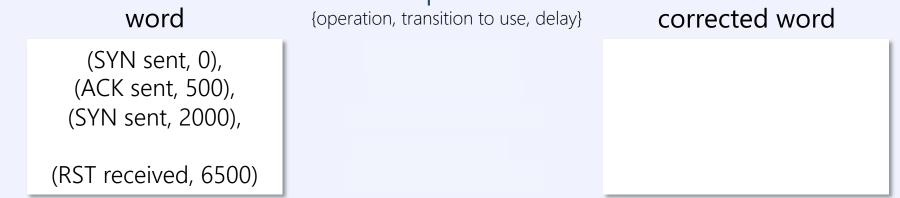
# Data encoding

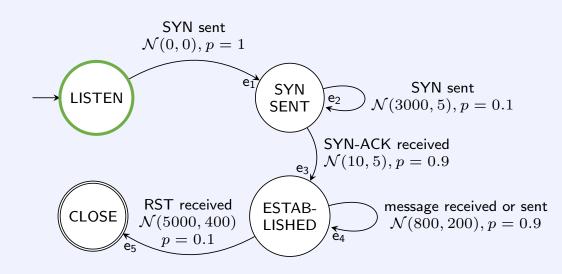
- 1. Correct the non-accepted words to remove the noise
  - 2. Encode the corrected data

| Noise type                                     | Correction operation |
|------------------------------------------------|----------------------|
| deletion<br>aabcad → aacad                     | add                  |
| insertion<br>aabcad → aabc <b>b</b> ad         | skip                 |
| transposition<br>aabcad → aa <b>cb</b> ad      | transpose            |
| symbol repetition<br>aabcad → aabca <b>a</b> d | deduplicate          |
| _                                              | follow               |

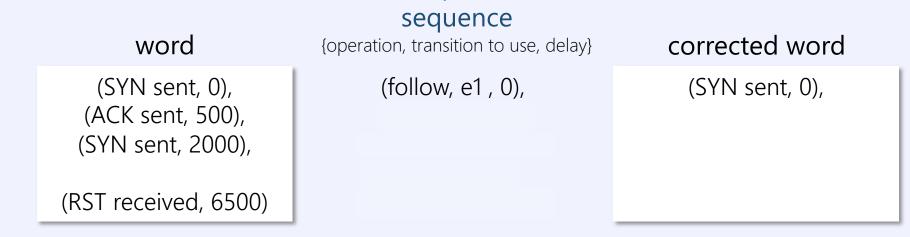
#### edit operation

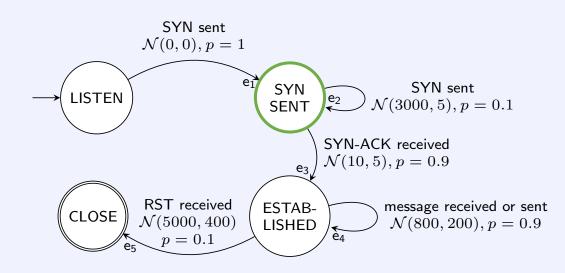
sequence



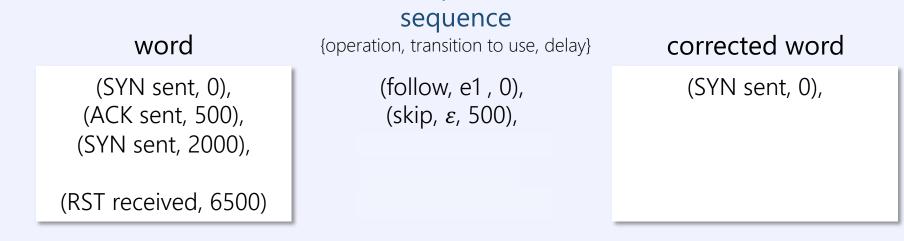


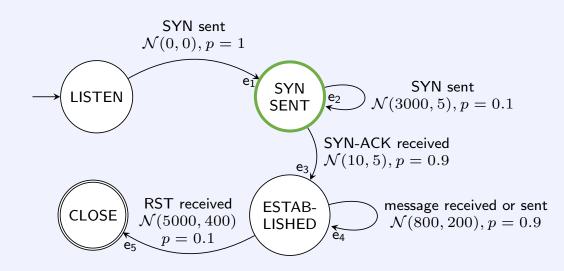
#### edit operation





#### edit operation





#### edit operation

**sequence** {operation, transition to use, delay}

(SYN sent, 0), (ACK sent, 500), (SYN sent, 2000),

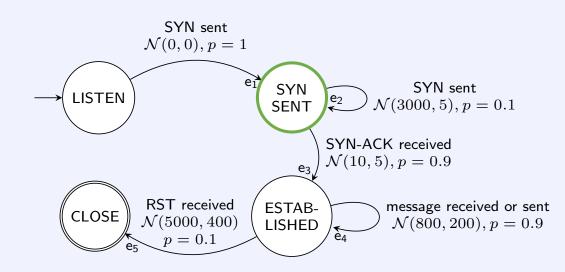
word

(RST received, 6500)

(follow, e1 , 0), (skip, ε, 500), (follow, e2 , 2000), corrected word

(SYN sent, 0),

(SYN sent, 2000),



#### edit operation

sequence

{operation, transition to use, delay}

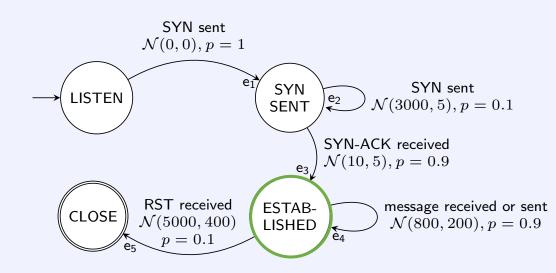
(SYN sent, 0), (ACK sent, 500), (SYN sent, 2000),

word

(RST received, 6500)

(follow, e1 , 0), (skip, ε, 500), (follow, e2 , 2000), (add, e3 , 10), (SYN sent, 0),

(SYN sent, 2000), (SYN-ACK received, 10),



#### edit operation

sequence

{operation, transition to use, delay}

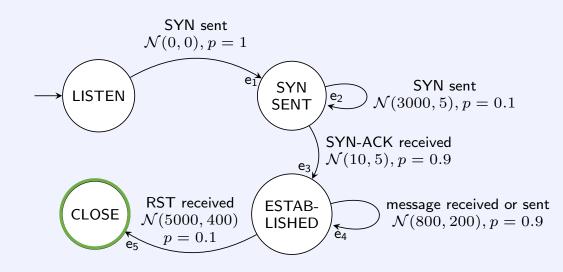
(SYN sent, 0), (ACK sent, 500), (SYN sent, 2000),

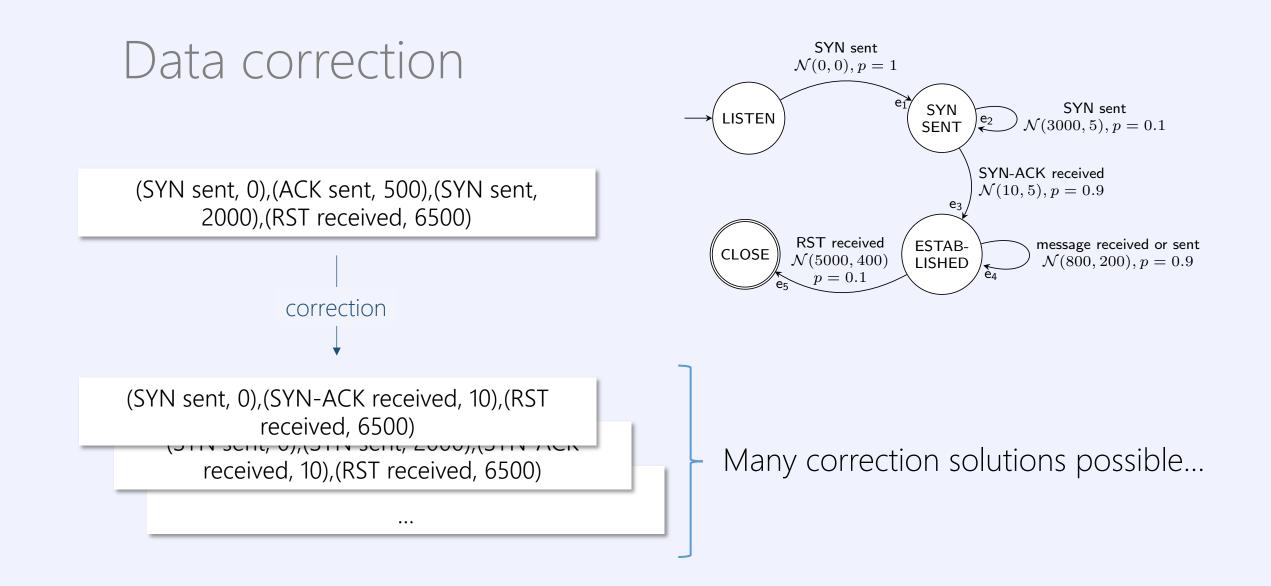
word

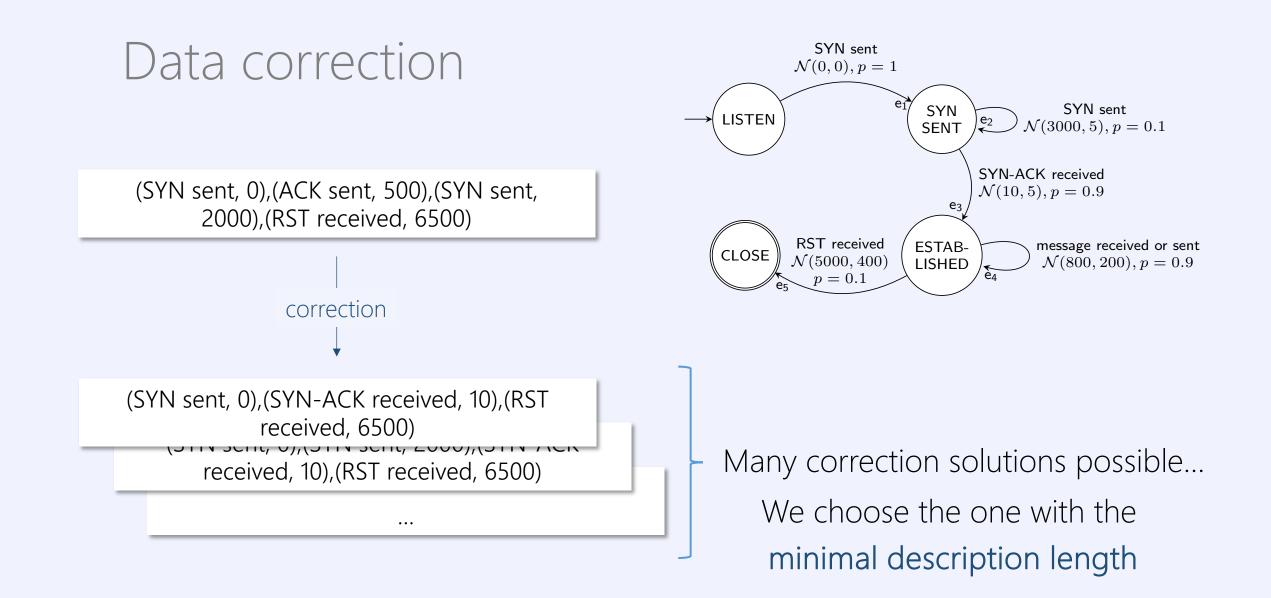
(RST received, 6500)

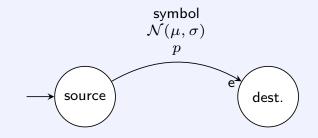
(follow, e1 , 0), (skip, ε, 500), (follow, e2 , 2000), (add, e3 , 10), (follow, e5 , 6500) (SYN sent, 0),

(SYN sent, 2000), (SYN-ACK received, 10), (RST received, 6500)

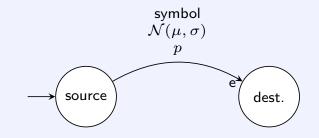








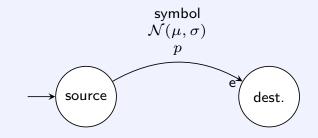
Cost of a **followed** pair (symbol, delay) corrected with (operation, transition, delay) depends on



Cost of a **followed** pair (**symbol**, **delay**) corrected with (**operation**, **transition**, **delay**) depends on

The probability of the edit operation (follow),

$$-\log_2 p(o)$$



Cost of a **followed** pair (symbol, delay)

corrected with (operation, transition, delay) depends on

- The probability of the edit operation (follow),
- The probability of the transition given the current state,

$$-\log_2 p(o) - \log_2 p(e|q_s(e))$$

symbol  $\mathcal{N}(\mu, \sigma)$  psource e dest.

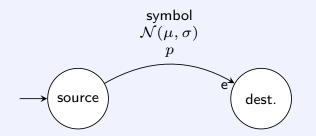
Cost of a **followed** pair (symbol, delay)

corrected with (operation, transition, delay) depends on

- The probability of the edit operation (follow),
- The probability of the transition given the current state,
- The probability of the delay given the transition guard's parameters.

 $-\log_2 p(o) - \log_2 p(e|q_s(e)) - \log_2 p(d|e)$ 

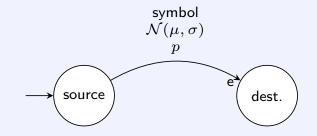
Cost of a transposed pair (symbol, delay)



corrected with (operation, transition, delay) depends on

- The probability of the edit operation (transpose),
- The probability of the transition given the current state,
- The probability of the delay given the transition guard's parameters.

 $-\log_2 p(o) - \log_2 p(e|q_s(e)) - \log_2 p(d|e)$ 



Cost of an added pair (symbol, delay)

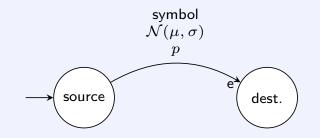
corrected with (operation, transition, delay) depends on

- The probability of the edit operation (add),
- The probability of the transition given the current state,

The probability of the delay given the transition guard's parameters.

 $-\log_2 p(o) - \log_2 p(e|q_s(e))$ 

Cost of a **deduplicated** pair (symbol, delay) corrected with (operation, transition, delay) depends on



The probability of the adit operation (doduplicate)

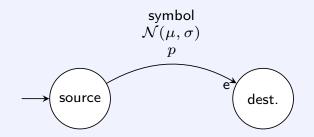
- The probability of the edit operation (deduplicate),
- The probability of the transition given the current state,
- The probability of the delay given the transition guard's parameters.

 $-\log_2 p(o) - \log_2 p(d|e)$ 

Cost of a skipped pair (symbol, delay) corrected with (operation,  $\varepsilon$ , delay) depends on

- The probability of the edit operation (skip),
- The probability of the transition given the current state,
- The probability of the delay given the transition guard's parameters.
- The cost of explicitly encoding the delay and the symbol.

 $-\log_2 p(o) + L_{\mathbb{N}}(d) + \log_2 |\Sigma|$ 



### Question



# How to find the automaton with the minimal MDL cost?

### TADAM: MDL-based automata learning

Initialize an automaton  $\hat{\mathcal{A}}$  with the data  $\mathcal D$ 

- Generate candidate automata by transforming Â
  For each candidate automaton A
  - Correct  ${\mathcal D}$  given  ${\mathcal A}$
  - Compute the cost  $L(\mathcal{A},\mathcal{D})$

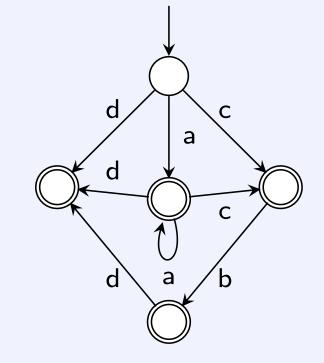
Select the automaton with minimal cost as  $\hat{\mathcal{A}}$ 

Return  $\hat{\mathcal{A}}$  when the cost doesn't descrease anymore

### Initialization

### Markov initialization

a c b a d c b a c a c a d a a c b d



guards and probabilities omitted

## Candidate automata generation

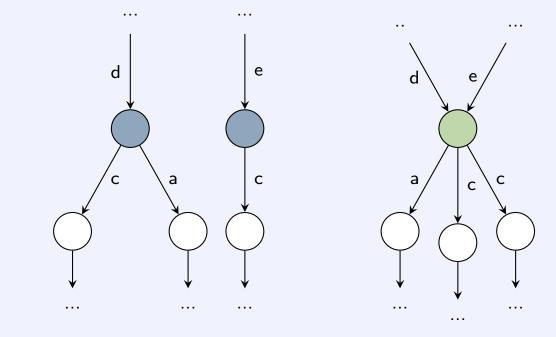
Automaton transformation operations:

- Location merge
  - Location split
- Subpart deletion

One candidate per possible transformation and position in the automaton

### Location merge

Goal: Reducing the size of the automaton and generalize the model (reduces the model cost)



Side effect: Increases the data cost

before

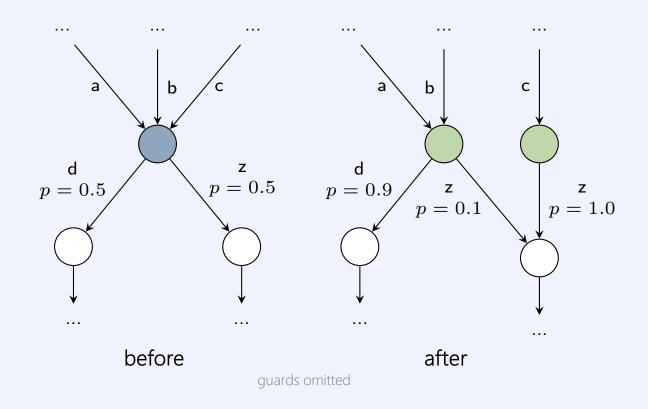
after

guards and probabilities omitted

## Location split

### Goal: Reducing the entropy of the "next triggered transition" at a given location (reduces the data cost)

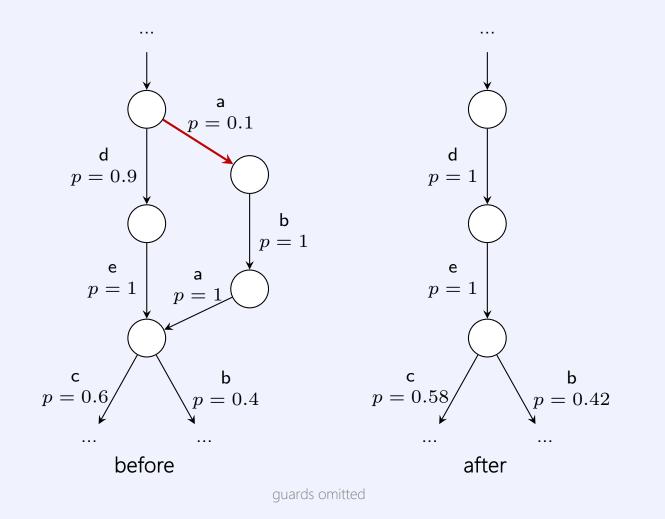
Side effect: Increases the model cost



## Subpart deletion

Goal: Reducing the size of the automaton (reduces the model cost)

Side effect: Increases the data cost



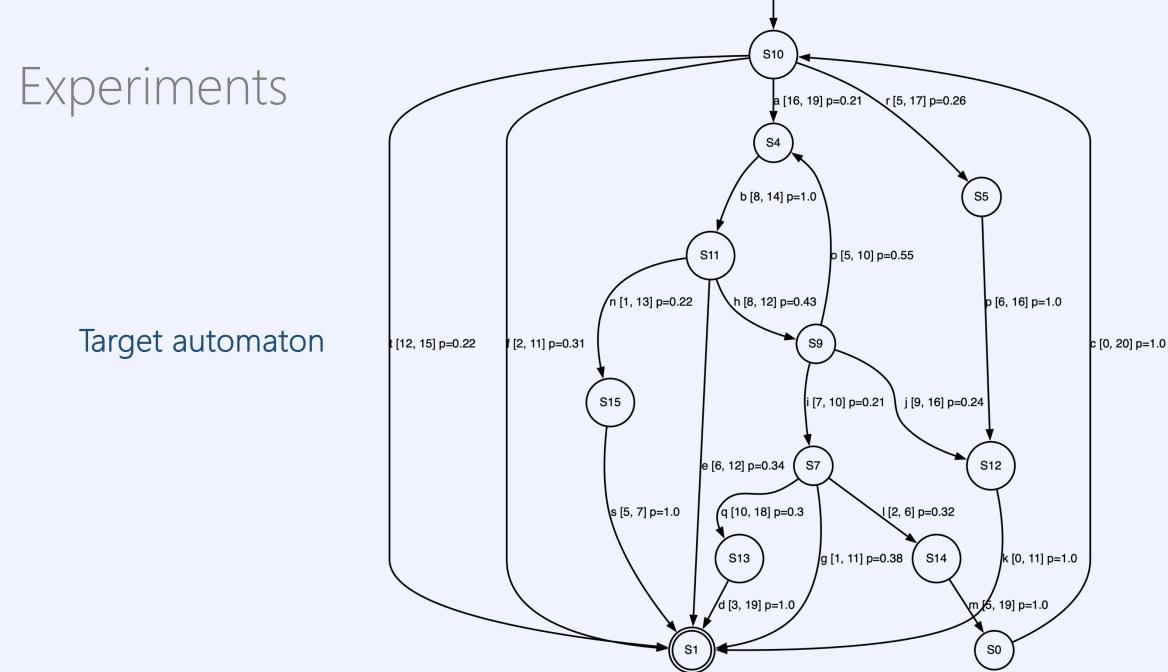
### Question

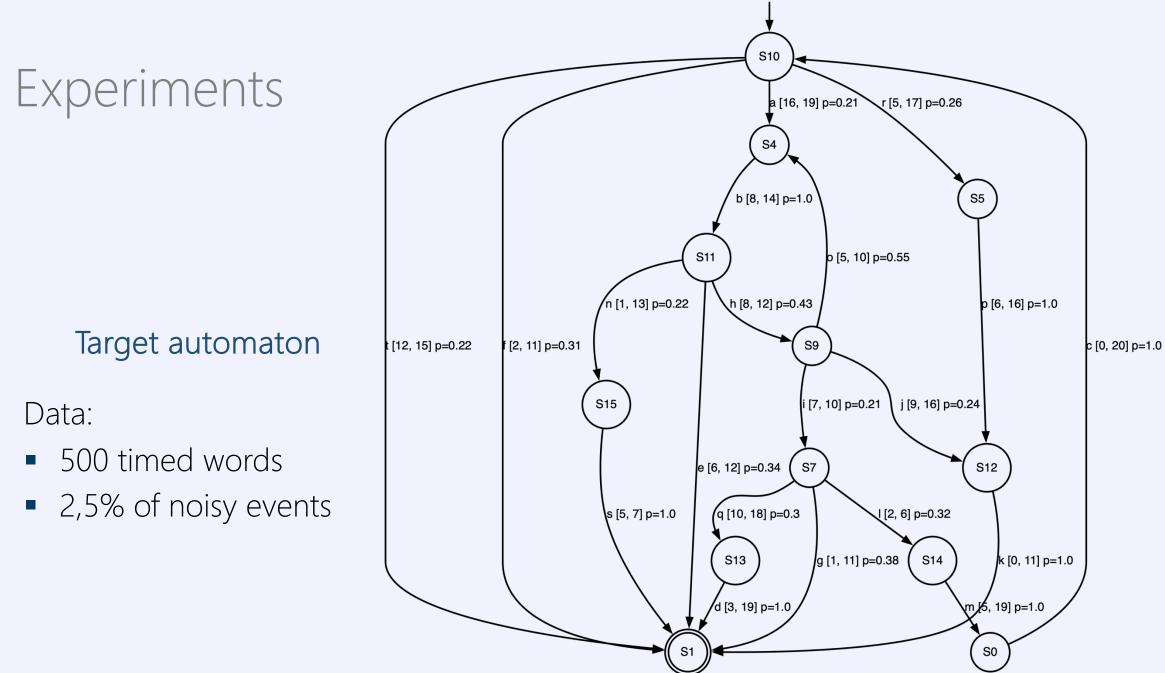


### Does it work?

## State of the Art

| Algorithm                                     | Strategy                                                  | Main limitation                                       |
|-----------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------|
| <b>TAG</b><br>(Cornanguer et al., 2022)       | Factorization on common sub-<br>parts and location splits |                                                       |
| <b>Timed k-Tail</b><br>(Pastore et al., 2017) | Factorization on common sub-<br>parts                     | No noise robustness strategy<br>→ requires clean data |
| <b>RTI+</b><br>(Verwer et al., 2010)          | Location merge based on<br>likelihood test                |                                                       |



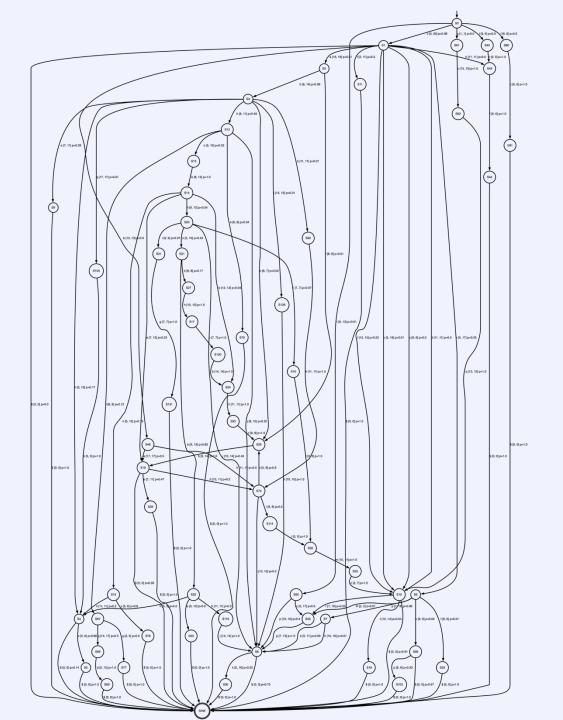


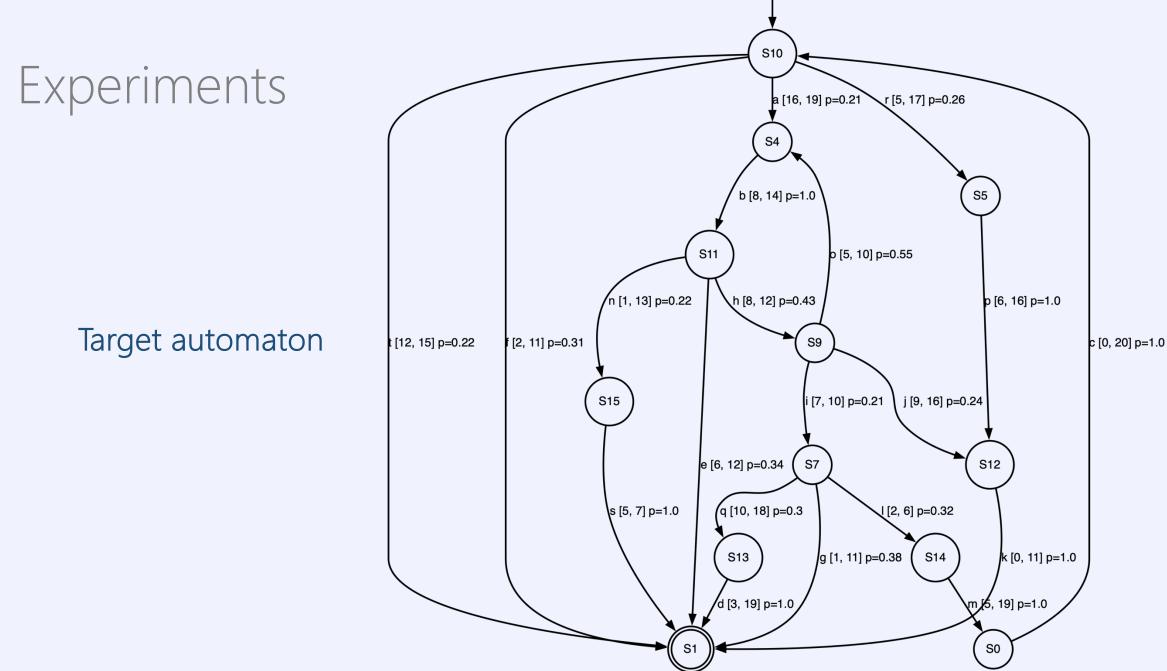
### TAG

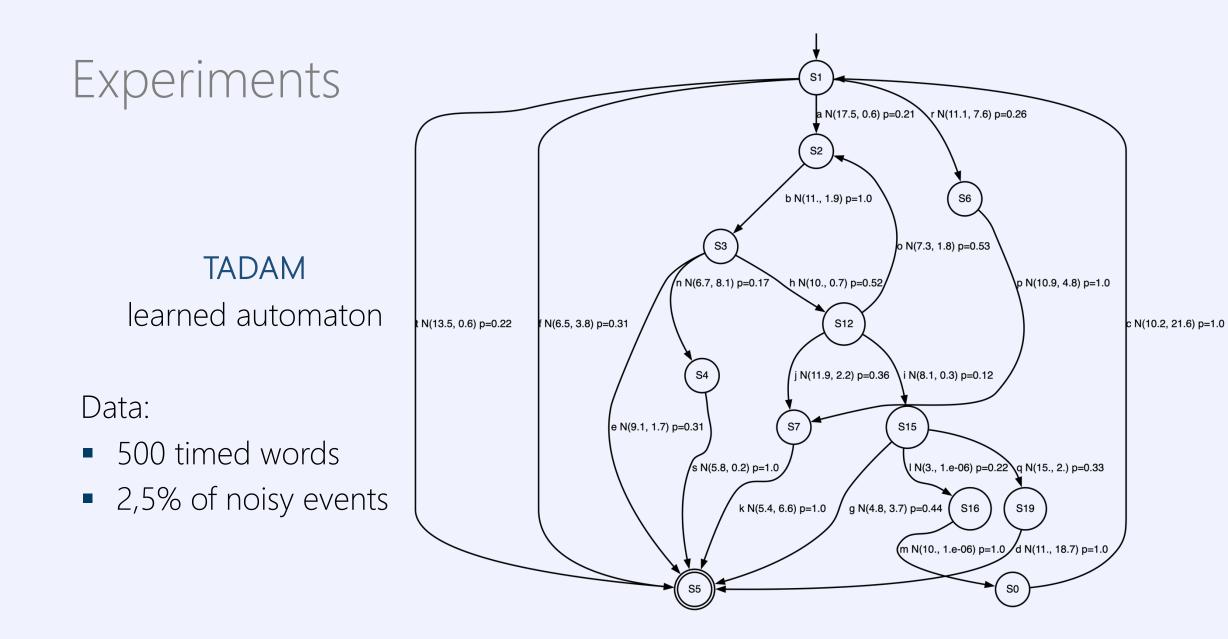
learned automaton

### Data:

- 500 timed words
- 2,5% of noisy events







non-actual speed

### Experiments

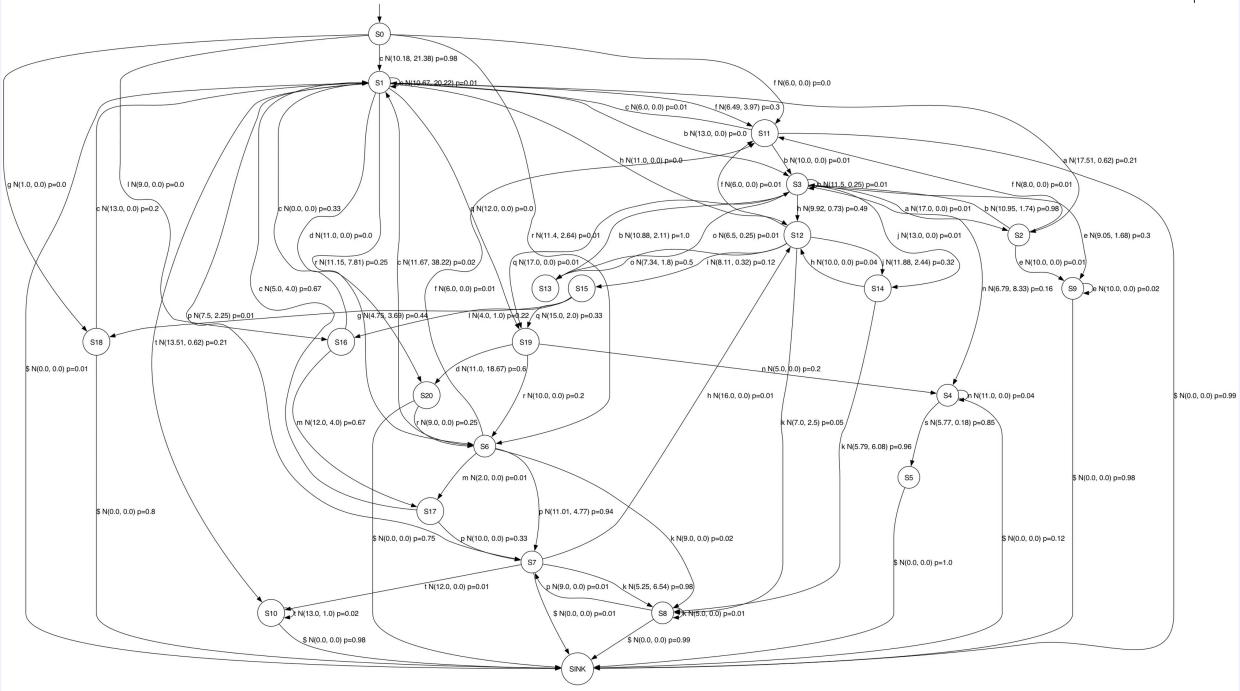
### TADAM

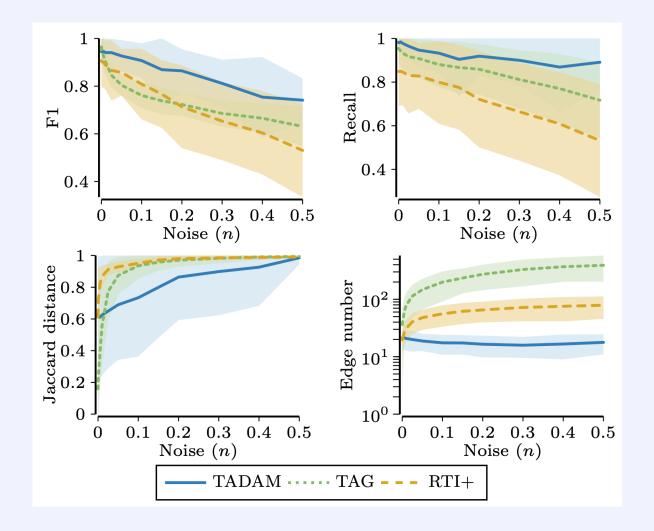
learned automaton

### Data:

- 500 timed words
- 2,5% of noisy events

non-actual speed





### Noise robustness on synthetic data

| -           |                        |        |       |       |       |  |
|-------------|------------------------|--------|-------|-------|-------|--|
|             | Learner                | AU-ROC | TPR   | FPR   | F1    |  |
| Γ           | TADAM                  | 0.982  | 0.998 | 0.025 | 0.705 |  |
| TA learners | TAG                    | 0.891  | 1     | 0.142 | 0.298 |  |
|             | RTI+                   | 0.790  | 1     | 0.292 | 0.171 |  |
|             | Hidden Markov<br>Model | 0.608  | 0.640 | 0.085 | 0.288 |  |

### Anomaly detection performances on HDFS dataset<sup>1</sup>

1. https://github.com/ait-aecid/anomaly-detection-log-datasets

|               | Learner                | AU-ROC | TPR   | FPR   | F1      |                                                   |
|---------------|------------------------|--------|-------|-------|---------|---------------------------------------------------|
|               | TADAM                  | 0.982  | 0.998 | 0.025 | 0.705 🔶 | very high detection rate<br>and less false alarms |
| TA learners – | TAG                    | 0.891  | 1     | 0.142 | 0.298   |                                                   |
|               | RTI+                   | 0.790  | 1     | 0.292 | 0.171   |                                                   |
|               | Hidden Markov<br>Model | 0.608  | 0.640 | 0.085 | 0.288   |                                                   |

### Anomaly detection performances on HDFS dataset<sup>1</sup>

1. https://github.com/ait-aecid/anomaly-detection-log-datasets

|             | Learner                | AU-ROC | TPR   | FPR   | F1                                                          |      |
|-------------|------------------------|--------|-------|-------|-------------------------------------------------------------|------|
|             | TADAM                  | 0.982  | 0.998 | 0.025 | 0.705  very high detection rand less false alarms           | ate  |
| TA learners | TAG                    | 0.891  | 1     | 0.142 | 0.298 overfit on the training<br>0.171 and don't generalize |      |
|             | RTI+                   | 0.790  | 1     | 0.292 | 0.171 And don't generalize                                  | well |
|             | Hidden Markov<br>Model | 0.608  | 0.640 | 0.085 | 0.288                                                       |      |

### Anomaly detection performances

on HDFS dataset<sup>1</sup>

|               | Learner                | AU-ROC | TPR   | FPR   | F1      | •                                                         |
|---------------|------------------------|--------|-------|-------|---------|-----------------------------------------------------------|
|               | TADAM                  | 0.982  | 0.998 | 0.025 | 0.705 🔶 | very high detection rate<br>and less false alarms         |
| TA learners – | TAG                    | 0.891  | 1     | 0.142 |         | overfit on the training data<br>and don't generalize well |
|               | RTI+                   | 0.790  | 1     | 0.292 | 0.171   | and don't generalize well                                 |
|               | Hidden Markov<br>Model | 0.608  | 0.640 | 0.085 | 0.288 ← | - not expressive enough                                   |

### Anomaly detection performances

on HDFS dataset<sup>1</sup>

### Conclusions

Contributions:

- A compression-based (MDL) score to avoid overfitting
- An explicit modelization of the noise

Experiments show that TADAM

- is far more robust to noise
- learns smaller models
- has better performances on real-world classification and anomaly detection tasks

## Thank you!

Contributions:

- A compression-based (MDL) score to avoid overfitting
- An explicit modelization of the noise

### Experiments show that TADAM

- is far more robust to noise
- learns smaller models
- has better performances on real-world classification and anomaly detection tasks

See you at the poster session!



pip install tadam-learner