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Behavior model formalism

Automata formalism
Finite state automata (FSA)

Natural formalism for discrete event system (DES) modeling

Human-understandable representation of the behavior of a system

Based on a mathematical formalism with extensive literature and with software 
support
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Noise model
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Noise model
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Noise model
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Question
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How to learn timed automata from noisy timed 
words?



Occam’s razor
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Your car battery is dead.

A group of hackers 
remotely accessed your 
car ’s onboard computer 
overnight, disabling the 

ignition system as part of 
a sophisticated cyber-

attack targeting random 
individuals to create 

chaos.

Why won’t my car start?



Occam’s razor
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The simplest model that fits the data is 
usually the correct one
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MDL principle
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L(D,A) = L(D|A) + L(A)

A∗ = argmin
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L(D|A) + L(A)
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Automaton encoding

§ Locations
§ Alphabet
§ Initial and accepting locations
§ For each transition:
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g Guards’ normal distributions parameters
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Data encoding

1. Correct the non-accepted words to remove the noise

2. Encode the corrected data

25



Data correction
Noise type Correction operation

deletion
aabcad → aacad add

insertion
aabcad → aabcbad skip

transposition
aabcad → aacbad transpose

symbol repetition
aabcad → aabcaad deduplicate

- follow

27
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Data correction
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Data encoding
Cost of a followed pair (symbol, delay) 
corrected with (operation, transition, delay) depends on

g The probability of the edit operation (follow),
g The probability of the transition given the current state,
g The probability of the delay given the transition guard’s parameters.
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Data encoding
Cost of a transposed pair (symbol, delay) 
corrected with (operation, transition, delay) depends on

g The probability of the edit operation (transpose),
g The probability of the transition given the current state,
g The probability of the delay given the transition guard’s parameters.
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Data encoding
Cost of an added pair (symbol, delay) 
corrected with (operation, transition, delay) depends on

g The probability of the edit operation (add),
g The probability of the transition given the current state,
g The probability of the delay given the transition guard’s parameters.
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Data encoding
Cost of a deduplicated pair (symbol, delay) 
corrected with (operation, transition, delay) depends on

g The probability of the edit operation (deduplicate),
g The probability of the transition given the current state,
g The probability of the delay given the transition guard’s parameters.
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Data encoding
Cost of a skipped pair (symbol, delay) 
corrected with (operation, 𝜀, delay) depends on

g The probability of the edit operation (skip),
g The probability of the transition given the current state,
g The probability of the delay given the transition guard’s parameters.
g The cost of explicitly encoding the delay and the symbol.
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Question

How to find the automaton with the minimal 
MDL cost?



TADAM: MDL-based automata learning
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Initialize an automaton Â with the data D
Generate candidate automata by transforming Â

For each candidate automaton A

Correct D given A

Compute the cost L(A,D)

Select the automaton with minimal cost as Â
Return Â when the cost doesn’t descrease anymore



Initialization
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a
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d

a

a c b
a d
c b a c
a c a
d a a
c b d

Markov initialization

guards and probabilities omitted



Candidate automata generation

Automaton transformation operations:

§ Location merge

§ Location split

§ Subpart deletion

One candidate per possible transformation and position in the automaton

39



Location merge
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Goal: 
Reducing the size of the 

automaton and generalize 
the model 

(reduces the model cost)

Side effect: 
Increases the data cost

...

... ...

...

...

d

c a

e

c

.....

...
... ...

d e

ca c

before after
guards and probabilities omitted



Location split
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Goal: 
Reducing the entropy of the 
”next triggered transition” at 

a given location 
(reduces the data cost)

Side effect: 
Increases the model cost

... ... ...

... ...

a b c

z

p = 0.5

d

p = 0.5

... ... ...

...
...

a b c

z

p = 0.1

z

p = 1.0

d

p = 0.9

before after
guards omitted



Subpart deletion
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Goal: 
Reducing the size of the 

automaton 
(reduces the model cost)

Side effect: 
Increases the data cost

...

... ...

a

p = 0.1

d

p = 0.9

e

p = 1

b

p = 1

a

p = 1

c

p = 0.6

b

p = 0.4

...

... ...

d

p = 1

e

p = 1

c

p = 0.58

b

p = 0.42

before after
guards omitted



Question
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Does it work?



State of the Art
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Algorithm Strategy Main limitation

TAG
(Cornanguer et al., 2022)

Factorization on common sub-
parts and location splits

No noise robustness strategy
➝ requires clean data

Timed k-Tail
(Pastore et al., 2017)

Factorization on common sub-
parts 

RTI+ 
(Verwer et al., 2010)

Location merge based on 
likelihood test



Experiments
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Target automaton

Data:
§ 500 timed words
§ 2,5% of noisy events
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learned automaton

Data:
§ 500 timed words
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Experiments
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Noise robustness 
on synthetic data



Experiments

Learner AU-ROC TPR FPR F1
TADAM 0.982 0.998 0.025 0.705

TAG 0.891 1 0.142 0.298
RTI+ 0.790 1 0.292 0.171

Hidden Markov 
Model 0.608 0.640 0.085 0.288

54

TA learners

Anomaly detection performances
on HDFS dataset1

1. https://github.com/ait-aecid/anomaly-detection-log-datasets
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TA learners overfit on the training data 
and don’t generalize well

Anomaly detection performances
on HDFS dataset1

very high detection rate 
and less false alarms

1. https://github.com/ait-aecid/anomaly-detection-log-datasets
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TA learners overfit on the training data 
and don’t generalize well

Anomaly detection performances
on HDFS dataset1

very high detection rate 
and less false alarms

not expressive enough

1. https://github.com/ait-aecid/anomaly-detection-log-datasets



Conclusions
Contributions:
§ A compression-based (MDL) score to avoid overfitting
§ An explicit modelization of the noise

Experiments show that TADAM
§ is far more robust to noise
§ learns smaller models
§ has better performances on real-world classification and anomaly detection tasks
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Thank you!
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Fos-R/TADAM

See you at the poster session!

Contributions:
§ A compression-based (MDL) score to avoid overfitting
§ An explicit modelization of the noise

Experiments show that TADAM
§ is far more robust to noise
§ learns smaller models
§ has better performances on real-world classification and anomaly detection tasks

pip install tadam-learner


